Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 2. P. 147-151.
https://doi.org/
10.15407/spqeo15.02.147



References

1. E. Bychkov, A. Bychkov, A. Pradel, M. Ribes, Percolation transition in Ag-doped chalcogenide glasses: comparison of classical percolation and dynamic structure models. Solid State Ionics, 691, p. 113-115 (1998).
https://doi.org/10.1016/s0167-2738(98)00396-8
 
2. M. Frumar, T. Wagner, Ag doped chalcogenide glasses and their applications. Current Opinions in Solid State and Math. Sci. 7, p. 117-126 (2003).
 
3. J. Dikova, P. Sharlandjiev, P. Gushterova, Tz. Babeva, Photoinduced changes in the optical properties of obliquely deposited a-As2S3 thin films. Vacuum, 69, p. 395-398 (2003).
https://doi.org/10.1016/S0042-207X(02)00374-3
 
4. H. Jeong, S.-T. Hwang, K. Cho, Quantitative analysis of photoinduced phenomena in amorphous As2S3 thin films using the scanning homodyne multiport interferometer. Opt. Communs. 249, p. 225-230 (2005).
https://doi.org/10.1016/j.optcom.2005.01.007
 
5. S. Stehlik, J. Kolar, M. Frumar, and T. Wagner, Phase separation in chalcogenide glasses: The system AgAsSSe. Intern. J. Appl. Glass Sci. 2, p. 301-307 (2011).
https://doi.org/10.1111/j.2041-1294.2011.00065.x
 
6. E. Bychkov, Superionic and ion-conducting chalcogenide glasses: Transport regimes and structural features. Solid State Ionics, 180, p. 510-516 (2009).
https://doi.org/10.1016/j.ssi.2008.09.013
 
7. E. Bychkov, D.L. Price, C.J. Benmore, A.C. Hannon, Ion transport regimes in chalcogenide and chalcohalide glasses: from the host to the cation-related network connectivity. Solid State Ionics, 154-155, p. 349-359 (2002).
https://doi.org/10.1016/S0167-2738(02)00572-6
 
8. I.P. Studenyak, M. Kranjec, and M.V. Kurik, Urbach rule and disordering processes in superionic conductors. J. Phys. Chem. Solids, 67, p. 807-817 (2006).
https://doi.org/10.1016/j.jpcs.2005.10.184
 
9. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, p. 1324 (1953).
https://doi.org/10.1103/PhysRev.92.1324
 
10. M.V. Kurik, Urbach rule. Phys. Stat. Sol. (a) 8, p. 9 (1971).
https://doi.org/10.1002/pssa.2210080102
 
11. M. Beaudoin, A.J.G. DeVries, S.R. Johnson, H. Laman, T. Tiedje, Optical absorption edge of semi-insulating GaAs and InP at high temperatures. Appl. Phys. Lett. 70, p. 3540 (1997).
https://doi.org/10.1063/1.119226
 
12. Z. Yang, K.P. Homewood, M.S. Finney, M.A. Harry, K.J. Reeson, Optical absorption study of ion beam synthesised polycrystalline semiconducting FeSi2. J. Appl. Phys. 78, p. 1958 (1995).
https://doi.org/10.1063/1.360167
 
13. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 47, p. 1480-1483 (1981).
https://doi.org/10.1103/PhysRevLett.47.1480