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Abstract. Conductivity of monolayer and bilayer graphene is considered with due regard
for mutual drag of band electrons and holes. Search of contribution of the drag to
conductivity shows that it sufficiently influences on mobility at high concentrations of
carriers, which belong to different groups and have different drift velocities. In bilayer
system the mutual drag can even change the direction of partial current.
Magnetoresistivity and Hall effect were theoretically investigated for neutral and gated
graphene. It is shown that for spatially unlimited neutral graphene Hall effect is totally
absent. In gated, exactly monopolar graphene for the same case effect of
magnetoresistivity vanishes; here the Hall constant does not involve any relaxation
characteristic in contrast to results obtained for the popular method of t-approximation. It
is shown that limited sizes of crystal with monopolar conductivity can be cause for
impressive dependence of the Hall constant and magnetoresistivity on the value of
external magnetic field.
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1. Introduction 1 —
na(Va) =— [ 12 d%k, =
T

Great interest now exists to systems of 2D carriers with “ 3
Dlrac:IIke dispersion law Esee, for instance, Refs. [1-6]): :izj.d ZIZL [1+ exp(s(a) (k,)—-eV, J] _ L9
e@ K, ) =nvek, ;eM K, )=hvek, . Ly keT
For this case, the microscopic velocities are =E(EJZC(K ).
Ve (k) =n"0e" (k) 1ok, =v.K Ik, . (1.2) m\Veh ’

k" dk

The value of velocity v for graphene is about Here, k, =eN,|/kgT; C(k;u)=|——7F";
F @ |Va| a -£1+EXD(K—Ka)

10° mis.
For neutral graphene (eg =0) ng =ny,. If Fermi  (2/7) C(0;1) =0.524. At «, >>1 (high level of
level is shifted by applying to a gate some bias voltage  degeneracy)
V., we obtain the so-called n-graphene or p-graphene, ~ . 2
a alied n-grap p-grep A VAT e ) (1.4)
where e =e[V,|. In this case (a = e or h),
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2. Kinetic and balance equation

Consider here an uniform graphene crystal in constant

uniform electrical and magnetic fields E and H . For
this case, the stationary quantum Kkinetic equation for the

distribution function f® of band carriers from a-group,

moving in the plane z =0, can be presented in the form
(see Ref. [7])

aé’fa
SAE_ KL
n ok,
€a )l 5,..9 |- @« (@) @)
+ 2 Hx— |,V k f- =St f 2,
h c{[ akL] L) . ki kL
(a=eorh). (2.1)

Here, St fE(j) is the collision integral. In this paper,
we consider classical magnetic field (for massless
fermions it corresponds to the following condition:
H <<c(kgT)?/envE). In what follows, we assume
the following orientation of fields:
E=E, =(Ex,Ey,0); H=(0,0,H,).

Applying to both sides of Eq. (2.1) the operator
(1/n2)J.IZLd2IZL, one obtains a set of exact balance

equations for dynamic and statistic forces:
ealE, +@/ ) (HxT )]+ F*S +H Fa0) =0
b

(a=eorh). (2.2)

Here,  G(® = (V) = (n’n,)™ j @ £ 42, s

the drift velocity for carriers of a-type, the force F®* is
connected with friction of drifting a-carriers with
equilibrium external scattering system, the force F

is connected with friction of drifting a-carriers with
drifting b-carriers (intergroup drag);

Eas __7 jk [5t®) £ @]d %,
T na
8n . Jd ijqld qLJ‘de(hw g L+8(kl)q ) x
<0 fyo,q LTS )+t -t
tanh(io/ 2kgT)+ £ & — £ &) Wb
(2.3)

here (¢%), g, = (2m)™ I<¢2>m,qqu , where ¢ is the

fluctuating external scattering potential;

40— (1 mPng) [ KI5t £ @107, =

:%IdzﬁLdeEl'jdqul d:? 8 (ho—

@ 4 (b) (b)
kJ_ kJ_ ql)s(hw SkJ_+8kJ_ qJ_)X
xexp(—qu W @ fEN a1 )~
(0)y ¢ (@
0 LA B a9 1.
(2.4)

In formulae (2.3) and (2.4), one assumes
contribution of two-dimensional carriers to screening as
negligible in comparison with the dielectric constant ¢,

of crystal lattice. The absence of divergence at the
coulomb scattering of particles of two-dimensional gas
allows to refuse from specific screening so necessary
(but badly grounded) for three-dimensional charged gas.
The factor exp(-2q,l,,) under integral in (2.4)

concerns that the case when carriers of a-type and b-type
move in parallel layers, separated by space I, .

Designate the equilibrium distribution function of
a-particles by the symbol f, (@ Ve, )= f|ZOL(a)' The

following consideration in this article will be performed
using the model non-equilibrium distribution function of
the following form:

a a) s (a = (a
fIZ(J_) = f, (a( )(vél) —uL( ))):

. -1
e ot |
B

It contains the vector G‘® as a model parameter.

The meaning of the latter is evident after calculation of
the averaged velocity of a-particles:

c@)y 1 j (@)
<VM>_n2na KL ka_ d? k

_1I
nn

a

(2.5)

f (g (V(a) o (a)))dZRLZU(a)

Thus, the vector G® is the drift velocity for the

group of a-particles. The density of two-dimensional
current in a uniform crystal for the corresponding group

(@a=eand h) is j, =e,n, 0¥ The total density of

current in graphene is j =—en, G’ + en, am.

Substituting the model functions (2.5) in the
formulae (2.3) and (2.4), one obtains:
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F@s) - d?k, [q,d%q, x
i (2" ”a'[ J_I 147aq;
(a) (a)

J.do)S(hm gl TE ql)><

(2.6)
J.(f (@) ffi{qL){tanh (ho! 2kgT) x

x coth [h(m—ﬁia)ql)/ZkBT]—lk(P 28)>0) gL s

(Zn)ze—hj'd . [a? |<ljo|qul jl 5 x

(hco s(a) () )S(ho) s(b)+g(.b) )x
%k = k -0y

k. 1L 19

4
(1 f(aj ( (1—f.(,b>, )_
ki k-G,
_t® (1—f.(b))f(a 1-1@
Ki-d, Ki )k k- qL
(2.7)

Introducing the function (2.5) into expressions (2.6)
and (2.7) and performing linearization of forces Iff‘*s)

@b _

o (29.10)| 1.7,

and F® over drift velocities G® and G, we obtain
the following convenient forms:

F@S) — ¢ @G

= (a,b) ab) (=(a) _ =(b) 28)
F= :—eac“;(')(ul —uj).

Here, (i j:x y)
p¥=—r2—|d%k, | qiq;d%dx

8n4k Tn I LI )
J.doaé(ho) 8()+8(a) jx

ky T
(2.9)

(@) _ (a)
X(fo(ghj fo(sh_qujx
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xsinh (m]@’ (S)>w Gy
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ah) .7 Pl el jd li‘d li‘q'quz”
87‘: k TSLI‘]

J-d(DB ho—e® +e@ 5] ho-e® +c® |«
ki ki-dp, ki ki-Gp

xexp(—Zquab)(f0 (géj))— fo {g(fi)_%jj(fo (gi)j_

ity [ 6@ fo(g@)_fo e® || sinn2[ M|,
ki -, ki ki-d, 2kgT

(2.10)

For elastic and scattering

(©)0,4, =(®%) g, 3(w). Then,

isotropic

Bi(?) _[d li.(hd q,8x

 16n 4
(2.11)

(@
O(SE )
()00, =8i;B@.

@, @ L
X ( K, + glzl—‘h j 5e@ (¢
ky

Uniting Egs. (2.2) and (2.8), we obtain the system
of the following vector equations:

E, +(/c)(Hxa®)-p@g@ -

_Zeb &(ab (u(a _ (2.12)

i®y=o0

3. Kinetic coefficients

To calculate the values B(a), we have at first to

construct the correlator ((p(25)>ql. For an external

scattering system represented by neutral impurities with
the concentration n{?) (see Egs. (2.11) and (A.1))

e,e2n{3 (kgT)?

(3.2)
e{qp vin®

BN = D(x,).

Here, D(x,) = 97°C (k,;3)/[2C (x,;1)]; D (0)~306.8;

D (x, >>1) ~ 9n’k2 /4.
For charged impurities (see below (A.2))

Bl = - 2n’e,e’nd) 1 efnvE . (3.2)

Note that the expression (3.2) does not depend on
the bias voltage V..
For the layer of impurities separated from graphene

by the distance |>>n."?, one has to introduce the

factor 1/2,/=°n I into Egs. (3.1) and (3.2).

To calculate the term responsible for a-b-drag for
carriers occupying the same plane, we have used the
formula (2.10) at 1., =0. After some simplification, we

obtain

g@b) _ €Ny g®a) o

€alp
2 2 (3.3)
. 9ne“e, (kgT)“ C(k,;0.5)C(ky;0.5)
2¢2n3vi C(xa:)

If a- and b-carriers occupy the planes separated by
-1/4

the distance |, , then for I, >> (n,n,) we have to
multiply the expression (3.3) by the factor
1/ 27 (ngng 41,5
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4. Conductivity of graphene
in absence of magnetic field

4.1. Neutral graphene
Here, we assume V, =V, =0. Then, at H =0 one
obtains from Egs. (2.12):

E, +pi®+e@®-aMy-o,

E, -pui™—g@™ -a®)=o, (4.)

where (see (3.3)) £~10€”(kgT)" /e h v,
Bery =20 1efn i,
By ~ 3006’3 (keT)? /ef g vin®.

It follows from (4.1) that for negligible drag
(& — 0) the coefficient B is in inverse proportion to the

mobility of carriers (e>0). Solving the system (4.1),
one finds:

A" =—a =€, /(B+28) =pE, . (4.2)
The density of total current:
-+ -+ = 2en(e)
=19+ =0.E = b+2e E.
(4.3)

For scattering by neutral impurities, the mutual

drag is negligible, if n{) >>q2/20; for charged
impurities one can

n& >> (kgT /v )2,

neglect the e—h-drag, Iif

4.2. Monopolar graphene

Here, we consider n-graphene with high-degenerate
carriers (kT << eV, ). For this case, the number of holes
is very small, and we can neglect their contribution to
conductivity. Let the external scattering system is
represented by charged impurities belonging to the plane
of graphene. It follows from Egs. (2.12), (3.2):

E, +p@a® =o;

B(e) - _H_l :_2n293né2|) /gfhvlzz . (4.4)

At ve =10%cmis, g, =10,n@ =10 cm™? one

obtains: u~15-10'cm?/V-s. This value does not

depend on the gate-voltage V.. So, the conductivity of
monopolar graphene depends linearly on the carrier
density, in accord with the experimental data (see
Ref. [1]). For the considered case, the conductivity

o, =—eng IB® =enu=e2vZ /27°nn{). (4.5)

So, at a gate bias the conductivity of graphene rises
as the square of gate voltage: o, ocV.2.
Let the external scattering system is represented by
neutral impurities. Then the conductivity
G, =engp, =—en, /p® =
L e, 45)
=88|_ thVF /97'[ e n(,\“)
Thereof, for neutral scattering centres the
conductivity does not depend on the voltage V..

5. Conductivity of two-layer graphene
in absence of magnetic field

The two-layer graphene system is especially interesting.
That contains two graphene layers separated by an
ultrathin highly insulating dielectric layer with the
width| (see, as a possible example, two-gate
composition in Fig. 1). The carriers in graphene -1 and
graphene—2 are accepted as high-degenerate

(kBT << e| V1y2|). Therefore, n; , = n‘l(e|V1'2|/th)2.

Represent the external scattering system by charged
impurities disposed with equal densities in both
graphene planes. As an example, consider here the most
actual case V,=V,>0 and V,=V,>0; then
graphene —1 has electron conductivity and graphene —2
has hole conductivity.

For the considered case, the system of equations
(4.1) can be written in the following form:

Es - BOu + 0P -ul?)-0
R ) WL
S L LR TR A

(5.1)
(5.2)

Here, B <0, B™ >0,£>0 and in accordance
with p. 4
e hv2 2neV | |’

en . 28°keT Vi .
9%e2n™ Vil V,

E=-t (53)

N

Fig. 1. Controlled bilayer graphene composition.
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It follows from (5.3) and (3.3) that the drag
coefficient for electrons in n-graphene linearly depends
on the gate voltage applied to p-graphene (and vice
verse).

The electric field components E,, and E,, can
have the same signs as the opposite ones. If the
inequality eV,I>>#av. is valid, then (see (5.3))

-p¥ =B =g =2n"’n? Ie’nv:. Solving the system (5.1),

(5.2) and using the formula (1.4), one obtains the
following expressions for densities of current:

2
] e ([ eV,
" =-enu® =c"E,, = (_1J DVE,, (54)

2B\ Veh
2
(0 _an ™ e __ & [BV2 ) S
=enu” =c'"E,, =——| —| D'E,,. 5.5
Jx h*'x 1X ZRB[VFFIJ 2X ( )
Here, D™and D® are the drag factors,

responsible for electron-hole drag in the considered
bilayer graphene structure. They are

o _ (B8 ~[(Ea/Ep) ~ (4 /V2)]

(B/e)+ [+ (V1 /V,)’]

() _ (B/8)~[L- (Vi 1V5)* (Eny / Ep)] (5.6)
(B/&)+[1+ (V1 /V5)’]

In absence of drag (&£—>0), we have

D™ =p®) =1. The symmetry of conductivities o™
and o'” relatively permutation 1< 2 is evident. So, it

6 1.4

is sufficient to investigate the structure of one drag
factor.

Below Figs. 2—4 illustrate dependence of the drag
factor D™ on the value of three controlling
combinations. If the factor D™ changes its sign, it
means that drag of electrons in n-layer by drifting holes
in p-layer is forced to reverse the direction of electron
current.

6. Galvanomagnetic effects in grapheme

Galvanomagnetic effects take up very important place in
kinetics of solid state systems. Measurements of
conductivity give data, which have to be supplemented
by additional results. Really, the conductivity contains at
least two ingredients: carrier density and relaxation
parameter (mobility). Therefore, some need appears to
execute in practice a complex set of experimental
measurements. Galvanomagnetic effects are quite
suitable for this purpose. Below, we will consider
magnetoresistance and Hall effect.

6.1. Neutral graphene

Here using Egs. (2.12), one obtains the following
equations from the balance ones (3 >0; &>0):

B, + (are)FA xa®)]-pa® —g(a® -a®)=0,

E, + (W) A xa®)|-pa® —g(a® -a®)=0. (6.1)

Tl.l
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Fig. 2. Dependence of the drag factor D™ on the ratio Eq/Ep. a) Vi/V, =1, b) ViV, =5, ¢) ViV, =0.2; 1) B/g=0.1,

2) Ble=3,3) B/E=20.
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Fig. 3. Dependence of the drag factor D™ on the ratio V;/V,. @) Eq/Ea=—10, b) Ey /Ex = 0, €) Ey/Eqy = 10; 1)B/E=0.1,

2)BlE=3,3)plE=20.
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Solution of this system is as follows:
[A/be) (HxE )~ E J/(H7 /c?B+p+28),

al®
0" =[@/be)(HxE ) +E J/H/"B+P+28). (6.2)

Then, the density of current is

=i+ =en®@@ -af) =

6.3
—[2en®(H2/c?B+p+28)E, . ¢

It follows from Eg. (6.3) that in neutral graphene
j, IIE,; thatis o,, =0, and the Hall field normal to the

total current does not arrive. What concerns transverse
magnetoresistivity, it exists here:

o(H,)=2en® [(H? /c?p + B+ 26),

(6.4)
o(0)=2en® /(B + 2¢),

These two formulae show the possibility to find
two kinetic coefficients B and & by performing not

complicated experimental measurements. Note that for
high magnetic fields the dependence of conductivity on
the drag coefficient & disappears.

6.2. Gated graphene
Consider here n-graphene created by applying the
sufficiently high voltage V. to a gate (eV, >>kgT).

Then, the balance equation for electrons has the form
(see Eq. (6.1))

E. + @) xa®)+pal® 0. (6.5)
The density of current j, = —en ',
Solving the vector equation (3.2), one obtains:

uf® =BE, + (H, /)E,1/B? + (H, /¢)?], 65)

uf =[-BE, +(H, /O)EJ/B® +(H, /0)*]

Let the current is directed along the x-axis:
j. =(j..0). Determine the Hall constant R, and
magnetic conductivity o(H) by using the relations

1 4
bré

6 8
-

2 4

Bré
Fig. 4. Dependence of the drag factor D™ on the ratio BIE. a) Ey/Exy=—10, b) Ey/Ex =0, €) Eg/Ex = 10; 1) V4 /V, = 0.1,
2) V1/V2—> 0, 3) V]_/Vz =10.

-

Ey:RHszx’ Jx =o(H)E,. (6.7)

It follows from Egs. (6.6) that for an arbitrary
magnetic field

c (H)=en® /B, Ry =(en®c¢)t. (6.8)

Thereof, one can see that the effect of transverse
magnetoconductivity of exactly monopolar graphene is
not pronounced (the conductivity does not depend on the
magnetic field). The Hall constant does not contain any
values responsible for the rate of momentum relaxation.

Note that the formulae (6.8) are distinct as
compared to well-known formulae obtained using the
standard t-approximation. In particular, the deduced
here Hall constant R, does not involve into its structure

the so-called “Hall factor”, which depends on some
specific time of relaxation. Appearance of the latter
factor in literature is totally related with the principal
imperfection of the method for t-approximation (see, for
instance, Ref. [9]).

Our consideration was grounded on a small number
of assumptions, and they were not too hard. But one
reason (see Section 7 below) is sufficiently important.

7. Galvanomagnetic effects in space limited crystals

For the magnetic field normal to the applied electric
field, the ordered motion of carriers becomes two-
dimensional. The value and distribution of transverse
flows depend significantly on geometry of crystal. For a
sufficiently long crystal, galvanomagnetic phenomena
are rather simple. But the situation changes essentially
when transverse sizes of crystal become comparable
with the longitudinal ones.

Up to this point, our consideration has concerned
crystals, the size of which I, along the direction of total
two-dimensional current was so long that the role of
transverse sizes |, appeared totally unimportant.
Practically, this approach contains the definite
assumption that is not valid for a general case. Here, in
this Section, one considers that the case when relation of
crystal width I, to its length I, is not extremely small and
investigates the influence of the value of the ratio
L =1,/1, on galvanomagnetic effects.
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Consider crystal with electron conductivity.
Assume that charged carriers move in good order in x-
and y-directions. In z-direction the crystal is not limited,
and in xy-plane it covers the rectangular area
—ll12<x<l, 12, -l ,/12<y<l,/2. (7.1)

The external magnetic field is directed along the z-
axis. Then vectors of the electric field E and of current

density j lay in xy-plane:
i=(ixx iy y);0),

E:%(x,y):(_@w(x'y)-_@‘P(X'V);o]: 72)

ox dy
=(Ex;Ey;0).

The current contacts are considered as disposed on
the lines x==+1,/2, -1, /2<y<I /2 and Hall contacts
are located in points x=+I,/2; y=+l /2.

In accordance with (7.2) and (7.3), the components
of vector | are:

. 0 0
Jx = oxxEx +nyEy == Ox 5_()\?_ Oyy E(P ;
; o o0}
Jy=opExtoyky =—cyE +ouEy =0y x %Gy
(7.3)
Here,
en
c,(N)=0c,(h)y=——,
. Y B+ h?)
enh (7:4)
o, (h)=—0c,(h)=—————=ho (h);
Xy yX B(1+ h2) XX
h=-H, /Bc. (7.5)
In the stationary case:
- i Jj
divj=0; or aj—"+L=O. (7.6)
ox oy

Introducing (7.3) into (7.6), one obtains the
following equation for the electrostatic potential ¢(x,y)

(two-dimensional Laplas equation):

2 2
-i§+flgzo. 7.7)
OX oy
The boundary conditions for this problem are
x=I1,12,y)=04/2;
o( X Y) =g (7.8)

o(x=—1,12,y)=0 /2

: o¢ o9
jy(x,yzily/2)=(cxy——cXX—J =0,
X oy y=tl, 12

or {ha_(p_a_(pj =0.
ox oy y=zly 12

The average density of current is

) ly/2
i=Go= [hxyay. (7.10)
y
Iy 12

In accord with the equations (7.6) and (7.7), this
value does not depend on the x-coordinate. Substituting
(7.3) into (7.10), we obtain:

ly/2
. 1 oo (X, 0o (X,
<Jx>=_|_ I [Gxx o y)+GXy o y)jdyz
y oX
-y /2
en
=X
B+h?)l,
ly/2
x| — J.q)(X,y)dy—i—h[(p(x,ly/Z)—q)(X,—ly/2) .
-y /2
(7.11)
The  experimentally  measured longitudinal

conductivity o(H) is now determined by the expression

o (H)=(ix) Ik /90- (7.12)
The value
Vi =0 —o1, (7.13)

where ¢ =@(x=0,y==+1,/2) is the measured Hall

potential for the case of point contacts.
Further, we shell use the dimensionless values:
E=2x/ly, n=2yll,, -1<&<1,

I, /1y =L, -1/L<q<1/L,
oEmM=0xY)/9,, o =¢® /g, (7.14)
Then
o(H)=—2Mt
B(L+h?)

1/L
x[a% [oEmdn+hloe, 170 -0, -1/0)

-1/L £=0
(7.15)

The Hall constant R, is determined using the

following relation:
Ry = [(PH) _@(7)]Ix Iy H; 99 G(H)‘z
:Hw(+’—m(‘>]|x/|y H, ofH)|.

The problem of calculation of space distribution for

(7.16)

dimensionless potential ®(&,m) is related with the
equation

2 2

‘3—;"+8—‘2°:0 (-1<E<1, -1/L<n<1/L ),(7.17)
& om

where boundary conditions have the form

o(E=Lnm)=1/2, o(E=-1n)=-1/2, (7.18)
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{_h(aw(é,n)}@w(&,n)} o (7.19)
% o n=+/L

Introduce the new variable Q(&,n):
o(@En)=(E/2)+hQ(En). (7.20)

Then, for the function Q(&,m) the considered
problem has the following form:

o*aEm) |, 2’QEm) _,

oe? on?
(-1<e<1; -1/L<n<1/L). (7.21)
The boundary conditions are:
QE=L,n)=0; QE=-1n)=0;
(7.22)
{_ h(aa(@ n)J L 20, n)} L g
ot on et 2

Solution of the problem (7.21)-(7.23) requires to
perform sufficiently cumbersome calculations for given
values h and L (see [11]). Usually obtained solution has
a form of unlimited series, which requires an
approximate summing with definite error. Due to some
reasons especially high requirements to precision of
calculations appears unnecessary. Then, it has a sense to
use more simple approximate methods of calculations.
Seeking for the suitable form of the function Q(§,n),
assume the following symmetry:
QE.M=-QE,-n); Q. M)=-Q(-¢,n). (7.24)

Supposing the value Q(&,m) even for parameter h,
in future for the convenience one accepts temporarily
h>0. In accordance with (7.24), it is sufficient to
consider the area
0<E<1; 0<n<i/L. (7.25)

The approximate solution of the problem (7.21)-
(7.23) is performed by us using the following model
function:

Q€. m)=M/2)1(E). (7.26)

Substituting the form (7.26) into (7.23), one obtains
the equation

OO e

(7.27)
L dg
In agreement with (7.22)
rE=1D=0. (7.28)
Solution of the problem (7.27), (7.28) is
(&) =1-exp[- LA-&)/h]. (7.29)
Thereof, it follows (see (7.26)):
Q(&,m)=(m/2){1-exp[- L(1-&)/h]}. (7.30)

Using the formulae (7.20), (7.24), and (7.30), one
obtains for an arbitrary sign of h the approximate
solution for the dimensionless potential over the whole
area (-1<&<land -1/L<n<1/L):

o(EM) = (&/2) +(hn/2) {1-exp|(g|-1)L /|| ]}.(7.32)
Note also (see (7.14) and (7.20)):

0™ = -0 = (h/2L)L-exp(- L/h[)]. (7.32)

The function (7.31) is not a precise solution of the
problem (7.17)-(7.19). It satisfies the corresponding
boundary conditions but does not satisfy precisely the
Laplas equation (7.17). But at the condition L >>|h|, the

structure  [0°0(&,M)/ 0% ] +[0°w(E,m)/n®] with the
form (7.31) practically in the whole area is exponentially
small value. The limit transition L — o gives well
known result. Note also that, at the condition L <<|h|,

the function (7.31) is also an approximate solution of a
good manner for the Laplas equation.

It follows from the form (7.31) that distribution
along y-axis of electric potential, dependent on magnetic
field, is determined by the parameter h, along x-axis — by
the parameter L/h.

Introducing the formulae (7.31) and (7.32) into the
expressions (7.15) and (7.16), one obtains the following
forms:

o(H) = (en/B) - Gy (i L),

Ry =(enc) ™ - Ggy (h; L), (7.33)
where
Gioy(h, L) = 1+1h2 {1+ h2(1-exp(-L /M) i (7.34)
_ (@+h?)[1-exp(-L/h)] 735
G (b= 1+h2(1-exp(-L/h)) (7.85)
Note that Gry(h;L—>0)—>1 and

Gy (h;L—> o) —>1. The functions (7.34) and (7.35)

depend on two arguments: dimensionless magnetic field
h and ratio of two geometrical sizes L. The factors
G,y (h;L) and G (h;L) have to be considered as

geometrical factors for “longitudinal”
magnetoconductivity and “Hall constant”.

The geometrical factor of magnetoresistance
G, (h,L) isintroduced as

G(p) (h,L) =1/G(G) (h,L). (7.36)
Note that to the relation

r(h,L)=Ry (h,L)/Ry (o, L) =

(h,L)=Ry (h,L)/ Ry (oo, L) (7.37)

ZG(R) (h, L)/G(R) (OO, L) .

one usually gives the title Hall factor. It follows from
Egs. (7.33)-(7.35) that the influence of magnetic field on
longitudinal conductivity and Hall constant of
monopolar crystal is related with a limited ratio of sizes
of the crystal.

It is seen from Figs. 5 and 6 (the calculations were
performed using the formulae (7.34) and (7.35)) that
longitudinal conductivity and Hall coefficient in
extremely long specimen (I /1, =L —>o) do not

depend on the intensity of magnetic field. If the
specimen is short, longitudinal conductivity and Hall
coefficient decrease with increasing the magnetic field.
At very high magnetic fields, the Hall coefficient tends
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(Z=10)(Z=20] (L= 100
2 416 8§ 10
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Fig. 5. Dependence of the geometrical factor for magnetoconductivity on the ratio of geometrical sizes of crystal (L) and on the

value of magnetic field (h).

(2)

(b)

Fig. 6. Dependence of the geometrical factor for the Hall constant (a) and Hall factor (b) on the value of magnetic field for

various ratios of crystal geometrical sizes.

=
—
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Fig. 7. Comparison of exact (a) and approximate (b) dependences for the geometrical factor of magnetoconductivity on the
value of magnetic field. 1) L=1,2) L=1.5,3)L=2,4)L=3,5)L=5,6) L = 0.

to constant value that depends only on the value of
ratio L. Magnetoconductivity does not approach
saturation and sufficiently decreases when magnetic
field rises.

The Figs 7a and 8a show geometrical factors for
magnetoconductivity and the Hall coefficient precisely
calculated for the problem (7.7)-(7.9) by totally
numerical way (see Ref. [12]). Figs 7b and 8b show the
same patterns calculated using the model potential
(7.31). It is seen that distinction between figures (a) and
(b) is not so large (especially for highL). The good
agreement of results obtained by exact and approximate

ways is not occasional. The used approximate form of
electrical potential provides continuity of current at all
the boundaries of crystal, where that is really necessary.
Presented here Figs. 7 and 8 show that in short
crystals magnetic field influences impressivebly on
conductivity and the Hall constant of crystal.

8. Discussion
It was shown above that in unlimited neutral graphene

crystal Hall effect is absent, while magnetoresistance is
present; in unlimited monopolar graphene the situation is
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Fig. 8. Comparison of exact (a) and approximate (b) dependences for the geometrical factor of the Hall constant on the ratio of

crystal geometrical sizes.
1) h=1.428,2) h=3.732,3) h =11.43, 4) h = 19.08.

totally opposite: Hall effect is present, but
magnetoresistance is absent. In a space-limited crystal
(ratio length to width is not too high), Hall effect and
magnetoresistance are present both in neutral and
monopolar crystals.

Appendix

As external scattering system, we consider here
impurities distributed uniformly in plane z =0 with the

density n{?.
Al. “Neutral’ hydrogen-like impurities
with the density n{?)
Three-dimensional potential of individual impurity
is (see Ref. [9])
@ N (F)=(e /e r)A+rqg /2)exp(-rqg);
Qg = 2m,e’ /e 1’
After Fourier transformation, one obtains:
on 1 (G,0) = [4ne, /e (a° +a3)I [+ 43 /(9” + 05)] 8(0)

B 1T
(PNI(qu(’)):? J.<PN|(qv0))qu =
n—oo

2ne q2 /2
- \/2' 2{+ ZB+ 2:16(0)).
€407 +0g QL +0s
For gg >>q, (see also Ref. [6]),

(@ 1)q, =9me’n{) 12685 (A1)
A2. Charged impurities with density n(czl)

In this case (see Ref. [6]),

= e _. 4dme
o ci(F) == ¢c(08=—750);
SLI’ qu
3.2.(2)
1 (2m)°e“ngy
<(P(23|>qj_:2_nj<&{)%l>q dg, =———— (A2)

€ 41
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