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Abstract. Conductivity of monolayer and bilayer graphene is considered with due regard 
for mutual drag of band electrons and holes. Search of contribution of the drag to 
conductivity shows that it sufficiently influences on mobility at high concentrations of 
carriers, which belong to different groups and have different drift velocities. In bilayer 
system the mutual drag can even change the direction of partial current. 
Magnetoresistivity and Hall effect were theoretically investigated for neutral and gated 
graphene. It is shown that for spatially unlimited neutral graphene Hall effect is totally 
absent. In gated, exactly monopolar graphene for the same case effect of 
magnetoresistivity vanishes; here the Hall constant does not involve any relaxation 
characteristic in contrast to results obtained for the popular method of τ-approximation. It 
is shown that limited sizes of crystal with monopolar conductivity can be cause for 
impressive dependence of the Hall constant and magnetoresistivity on the value of 
external magnetic field.   
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1. Introduction  

Great interest now exists to systems of 2D carriers with 
Dirac-like dispersion law (see, for instance, Refs. [1-6]): 
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For this case, the microscopic velocities are  
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The value of velocity Fv  for graphene is about 
106 m/s. 

For neutral graphene ( 0=εF ) he nn = . If Fermi 
level is shifted by applying to a gate some bias voltage 

aV , we obtain the so-called n-graphene or p-graphene, 
where aF Ve=ε . In this case (a = e or h), 
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2. Kinetic and balance equation 

Consider here an uniform graphene crystal in constant 
uniform electrical and magnetic fields E


 and H


. For 

this case, the stationary quantum kinetic equation for the 
distribution function )(a

kf ⊥
  of band carriers from a-group, 

moving in the plane 0=z , can be presented in the form 
(see Ref. [7])  
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(а = e or h).  (2.1)  

Here, )(St a
k

f
⊥
  is the collision integral. In this paper, 

we consider classical magnetic field (for massless 
fermions it corresponds to the following condition: 

22 /)( FB veTkcH << ). In what follows, we assume 
the following orientation of fields: 

)0,,( yx EEEE == ⊥


; ),0,0( zHH =


. 
Applying to both sides of Eq. (2.1) the operator 
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22 )/1( , one obtains a set of exact balance 

equations for dynamic and statistic forces:  
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the drift velocity for carriers of a-type, the force ),( SaF⊥


 is 

connected with friction of drifting a-carriers with 
equilibrium external scattering system, the force ),( baF⊥
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is connected with friction of drifting a-carriers with 
drifting b-carriers (intergroup drag); 
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  (2.4) 

In formulae (2.3) and (2.4), one assumes 
contribution of two-dimensional carriers to screening as 
negligible in comparison with the dielectric constant Lε  
of crystal lattice. The absence of divergence at the 
coulomb scattering of particles of two-dimensional gas 
allows to refuse from specific screening so necessary 
(but badly grounded) for three-dimensional charged gas. 
The factor )2exp( balq⊥−  under integral in (2.4) 
concerns that the case when carriers of a-type and b-type 
move in parallel layers, separated by space bal . 

Designate the equilibrium distribution function of 
a-particles by the symbol )(0)(

0 ))(( a
kk

a fvf
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
. The 

following consideration in this article will be performed 
using the model non-equilibrium distribution function of 
the following form: 
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It contains the vector )(au⊥


 as a model parameter. 
The meaning of the latter is evident after calculation of 
the averaged velocity of a-particles: 
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Thus, the vector )(au⊥


 is the drift velocity for the 
group of a-particles. The density of two-dimensional 
current in a uniform crystal for the corresponding group 
(a = e and h ) is )(a

aaa unej ⊥=


. The total density of 

current in graphene is )()( h
h

e
e uneunej ⊥⊥ +−=


. 

Substituting the model functions (2.5) in the 
formulae (2.3) and (2.4), one obtains: 
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Introducing the function (2.5) into expressions (2.6) 
and (2.7) and performing linearization of forces ),( SaF⊥
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 over drift velocities )(au⊥
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For elastic and isotropic scattering 
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Uniting Eqs. (2.2) and (2.8), we obtain the system 
of the following vector equations: 
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3. Kinetic coefficients 

To calculate the values )(aβ , we have at first to 

construct the correlator 
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For charged impurities (see below (A.2)) 
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Note that the expression (3.2) does not depend on 
the bias voltage Va. 

For the layer of impurities separated from graphene 
by the distance 2/1−>> anl , one has to introduce the 

factor lna
32/1 π  into Eqs. (3.1) and (3.2).  

To calculate the term responsible for a-b-drag for 
carriers occupying the same plane, we have used the 
formula (2.10) at 0=abl . After some simplification, we 
obtain  
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If a- and b-carriers occupy the planes separated by 
the distance abl , then for 4/1)( −>> baab nnl  we have to 
multiply the expression (3.3) by the factor 

abba lnn 4/13 )(2/1 π . 



 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2012. V. 15, N 2. P. 129-138. 

 

 

© 2012, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

132 

4. Conductivity of graphene  
in absence of magnetic field 

4.1. Neutral graphene 
Here, we assume 0== he VV . Then, at 0=H


 one 

obtains from Eqs. (2.12):  
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one finds: 

⊥⊥⊥⊥ µ=ξ+β=−= EEuu eh 
)2/()()( .    (4.2) 

The density of total current: 

.
2

2
2

2

)(
)()(

⊥

⊥⊥⊥⊥⊥⊥









ξ+β

≈

≈
ξ+β

=σ=+=

E
v

Tke

EenEjjj

F

B

e
he







 (4.3) 

For scattering by neutral impurities, the mutual 
drag is negligible, if 20/2)2(

B
qn IN >> ; for charged 

impurities one can neglect the he − -drag, if 
2)2( )/( FBIC vTkn >> . 

4.2. Monopolar graphene 

Here, we consider n-graphene with high-degenerate 
carriers ( eB eVTk << ). For this case, the number of holes 
is very small, and we can neglect their contribution to 
conductivity. Let the external scattering system is 
represented by charged impurities belonging to the plane 
of graphene. It follows from Eqs. (2.12), (3.2):  
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obtains: s/Vcm105.1 24 ⋅⋅≈µ . This value does not 
depend on the gate-voltage Ve. So, the conductivity of 
monopolar graphene depends linearly on the carrier 
density, in accord with the experimental data (see 
Ref. [1]). For the considered case, the conductivity 
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So, at a gate bias the conductivity of graphene rises 
as the square of gate voltage: 2
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Let the external scattering system is represented by 

neutral impurities. Then the conductivity 
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Thereof, for neutral scattering centres the 
conductivity does not depend on the voltage Ve. 

5. Conductivity of two-layer graphene  
in absence of magnetic field 

The two-layer graphene system is especially interesting. 
That contains two graphene layers separated by an 
ultrathin highly insulating dielectric layer with the 
width l (see, as a possible example, two-gate 
composition in Fig. 1). The carriers in graphene 1−  and 
graphene 2−  are accepted as high-degenerate 

( )2,1VeTk B << . Therefore, ( )22,1
1

2,1 FvVen −π= . 

Represent the external scattering system by charged 
impurities disposed with equal densities in both 
graphene planes. As an example, consider here the most 
actual case 01 >= eVV  and 02 >= hVV ; then 
graphene 1−  has electron conductivity and graphene 2−  
has hole conductivity. 

For the considered case, the system of equations 
(4.1) can be written in the following form: 

( ) ;0)()()()(
1 =−ξ+β− h

x
e

x
e

x
e

x uuuE  (5.1) 

( )( )
( )( ) .0/

/
2)()()()(

2

)()()()(
2
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=−ξ+β−

he
h

x
e

x
h

x
h

x

he
h

x
e

x
h

x
h

x

VVuuuE

nnuuuE
  (5.2) 

Here, 0,0,0 )()( >ξ>β<β he  and in accordance 
with p. 4   









π

+
ε

π
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9
2
ε

≈ξ−=ξ .   (5.3) 

 

 
Fig. 1. Controlled bilayer graphene composition. 
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Fig. 2. Dependence of the drag factor D(n) on the ratio E1x /E2x. a) V1 /V2 = 1, b) V1 /V2 = 5, c) V1 /V2 = 0.2; 1) 1.0/ =ξβ , 

2) 3/ =ξβ , 3) 20/ =ξβ . 
 

 
Fig. 3. Dependence of the drag factor D(n) on the ratio V1 /V2. a) E1x /E2x = 10− , b) E1x /E2x = 0, c) E1x /E2x = 10; 1) 1.0/ =ξβ , 

2) 3/ =ξβ , 3) 20/ =ξβ . 
 

It follows from (5.3) and (3.3) that the drag 
coefficient for electrons in n-graphene linearly depends 
on the gate voltage applied to p-graphene (and vice 
verse). 

The electric field components xE1  and xE2  can 
have the same signs as the opposite ones. If the 
inequality Fa vleV >>  is valid, then (see (5.3)) 

22)2(32)()( /2 FLIC
he vne επ=β=β=β− . Solving the system (5.1), 

(5.2) and using the formula (1.4), one obtains the 
following expressions for densities of current: 

x
n

F
x

ne
xe

n
x ED

v
eVeEuenj 1

)(
2

1
1

)()()(

2 







πβ

=σ=−=


,    (5.4) 

x
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eVeEuenj 2

)(
2

2
1

)()()(

2 







πβ

=σ==


. (5.5) 

Here, )(nD and )( pD  are the drag factors, 
responsible for electron-hole drag in the considered 
bilayer graphene structure. They are 

])/(1[)/(
])/()/[()/(

2
21

2
2112)(

VV
VVEED xxn

++ξβ

−−ξβ
= , 

])/(1[)/(
)]/()/(1[)/(

2
21

21
2

21)(

VV
EEVVD xxp

++ξβ
−−ξβ

= . (5.6)  

In absence of drag ( 0→ξ ), we have 

1)()( == pn DD . The symmetry of conductivities )(nσ  
and )( pσ  relatively permutation 21↔  is evident. So, it 

is sufficient to investigate the structure of one drag 
factor. 

Below Figs. 2−4 illustrate dependence of the drag 
factor )(nD  on the value of three controlling 
combinations. If the factor )(nD  changes its sign, it 
means that drag of electrons in n-layer by drifting holes 
in p-layer is forced to reverse the direction of electron 
current. 

6. Galvanomagnetic effects in grapheme 

Galvanomagnetic effects take up very important place in 
kinetics of solid state systems. Measurements of 
conductivity give data, which have to be supplemented 
by additional results. Really, the conductivity contains at 
least two ingredients: carrier density and relaxation 
parameter (mobility). Therefore, some need appears to 
execute in practice a complex set of experimental 
measurements. Galvanomagnetic effects are quite 
suitable for this purpose. Below, we will consider 
magnetoresistance and Hall effect. 

6.1. Neutral graphene 

Here using Eqs. (2.12), one obtains the following 
equations from the balance ones ( )0;0 >ξ>β :  

( )( )[ ] ( ) 0/1 )()()()( =−ξ−β−×+− ⊥⊥⊥⊥⊥
heee uuuuHcE


, 

 
( )( )[ ] ( ) 0/1 )()()()( =−ξ−β−×+ ⊥⊥⊥⊥⊥

ehhh uuuuHcE


. (6.1) 
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Fig. 4. Dependence of the drag factor D(n) on the ratio ξβ / . a) E1x /E2x = 10− , b) E1x /E2x = 0, c) E1x /E2x = 10; 1) V1 /V2 = 0.1, 
2) V1 /V2→ 0, 3) V1 /V2 = 10. 
 

Solution of this system is as follows: 
)2//(])()/1[( 22)( ξ+β+β−×= ⊥⊥⊥ cHEEHbcu z

e 
, 

)2//(])()/1[( 22)( ξ+β+β+×= ⊥⊥⊥ cHEEHbcu z
h


.   (6.2) 

Then, the density of current is 

.])2/(2[

)(
122)(

)()()()()(

⊥
−

⊥⊥⊥⊥⊥

ξ+β+β=

=−=+=

EcHne

uuenjjj

z
e

eheeh





    (6.3) 

It follows from Eq. (6.3) that in neutral graphene 

⊥⊥ Ej


|| ; that is 0=σxy , and the Hall field normal to the 
total current does not arrive. What concerns transverse 
magnetoresistivity, it exists here: 

,)2/(2)0(

),2//(2)(
)(

22)(

ξ+β=σ

ξ+β+β=σ
e

z
e

z

ne

cHneH
 (6.4) 

These two formulae show the possibility to find 
two kinetic coefficients β  and ξ  by performing not 
complicated experimental measurements. Note that for 
high magnetic fields the dependence of conductivity on 
the drag coefficient ξ  disappears. 

6.2. Gated graphene 

Consider here n-graphene created by applying the 
sufficiently high voltage Ve to a gate ( TkeV Be >> ). 
Then, the balance equation for electrons has the form 
(see Eq. (6.1)) 

( )( )[ ] 0/1 )()( =β+×+ ⊥⊥
ee uuHcE


.  (6.5) 

The density of current )(e
euenj ⊥⊥ −=


. 
Solving the vector equation (3.2), one obtains:  

].)/(/[])/([

],)/(/[])/([
22)(

22)(

cHEcHEu

cHEcHEu

zxzy
e

y

zyzx
e

x

+β+β−=

+β+β−=
 (6.6) 

Let the current is directed along the x-axis: 
)0,( xjj =⊥


. Determine the Hall constant HR  and 

magnetic conductivity )(Hσ  by using the relations   

xzHy jHRE = ,   xx EHj )(σ= . (6.7) 
It follows from Eqs. (6.6) that for an arbitrary 

magnetic field 
1)()( )(,/)( −=β=σ cenRenH e

H
e . (6.8) 

Thereof, one can see that the effect of transverse 
magnetoconductivity of exactly monopolar graphene is 
not pronounced (the conductivity does not depend on the 
magnetic field). The Hall constant does not contain any 
values responsible for the rate of momentum relaxation. 

Note that the formulae (6.8) are distinct as 
compared to well-known formulae obtained using the 
standard τ -approximation. In particular, the deduced 
here Hall constant HR  does not involve into its structure 
the so-called “Hall factor”, which depends on some 
specific time of relaxation. Appearance of the latter 
factor in literature is totally related with the principal 
imperfection of the method for τ-approximation (see, for 
instance, Ref. [9]).  

Our consideration was grounded on a small number 
of assumptions, and they were not too hard. But one 
reason (see Section 7 below) is sufficiently important. 

7. Galvanomagnetic effects in space limited crystals 

For the magnetic field normal to the applied electric 
field, the ordered motion of carriers becomes two-
dimensional. The value and distribution of transverse 
flows depend significantly on geometry of crystal. For a 
sufficiently long crystal, galvanomagnetic phenomena 
are rather simple. But the situation changes essentially 
when transverse sizes of crystal become comparable 
with the longitudinal ones.  

Up to this point, our consideration has concerned 
crystals, the size of which lx along the direction of total 
two-dimensional current was so long that the role of 
transverse sizes ly appeared totally unimportant. 
Practically, this approach contains the definite 
assumption that is not valid for a general case. Here, in 
this Section, one considers that the case when relation of 
crystal width ly to its length lx is not extremely small and 
investigates the influence of the value of the ratio 

yx llL /=  on galvanomagnetic effects. 
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Consider crystal with electron conductivity. 
Assume that charged carriers move in good order in x- 
and y-directions. In z-direction the crystal is not limited, 
and in xy-plane it covers the rectangular area 

.2/2/,2/2/ yyxx lyllxl ≤≤−≤≤−  (7.1) 
The external magnetic field is directed along the z-

axis. Then vectors of the electric field E


 and of current 
density j


 lay in xy-plane: 
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

 (7.2) 

The current contacts are considered as disposed on 
the lines 2/2/,2/ yyx lyllx ≤≤−±=  and Hall contacts 
are located in points 2/;2/ yx lylx ±=±= .  

In accordance with (7.2) and (7.3), the components 
of vector j


 are: 

;
yx

EEj xyxxyxyxxxx ∂
ϕ∂

σ−
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σ−=σ+σ=    

.
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EEEEj xxxyyxxxxyyyyxyxy ∂
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 (7.3) 
Here, 
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 (7.4) 

cHh z β−= / .  (7.5) 
In the stationary case: 

0or;0div =
∂

∂
+

∂
∂

=
y
j

x
j

j yx
. (7.6) 

Introducing (7.3) into (7.6), one obtains the 
following equation for the electrostatic potential ),( yxϕ  
(two-dimensional Laplas equation): 

0
2

2

2

2
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+

∂
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yx
. (7.7) 

The boundary conditions for this problem are  
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The average density of current is 

.),(1
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y

y
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l
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y
x dyyxj

l
jj  (7.10) 

In accord with the equations (7.6) and (7.7), this 
value does not depend on the x-coordinate. Substituting 
(7.3) into (7.10), we obtain: 
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 (7.11) 
The experimentally measured longitudinal 

conductivity )(Hσ  is now determined by the expression  

0/)( ϕ〉〈=σ xx ljH .   (7.12) 
The value  

)()( −+ ϕ−ϕ=HV , (7.13) 

where )2/,0()(
ylyx ±==ϕ=ϕ ±  is the measured Hall 

potential for the case of point contacts.     
Further, we shell use the dimensionless values: 
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,11,/2,/2
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≤ξ≤−=η=ξ
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Then  
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 (7.15) 
The Hall constant HR  is determined using the 

following relation: 
[ ]

[ ] .)(/

)(/

)()(

0
)()(

HHll

HHllR

zyx

zyxH

σω−ω=

=σϕϕ−ϕ=

−+

−+

 (7.16) 

The problem of calculation of space distribution for 
dimensionless potential ),( ηξω  is related with the 
equation 

0
2

2

2

2
=

η∂

ω∂
+

ξ∂

ω∂    ( LL /1/1,11 ≤η≤−≤ξ≤− ),(7.17) 

where boundary conditions have the form 
 

2/1),1(,2/1),1( −=η−=ξω=η=ξω , (7.18) 
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ηξω∂

−
±=η L

h  (7.19) 

Introduce the new variable ηξΩ ,( ): 
),()2/(),( ηξΩ+ξ=ηξω h . (7.20) 

Тhen, for the function ),( ηξΩ  the considered 
problem has the following form:  

0),(),(
2

2

2

2
=

η∂

ηξΩ∂
+

ξ∂

ηξΩ∂  

( LL /1/1;11 ≤η≤−≤ξ≤− ). (7.21) 
The boundary conditions are: 

;0),1(;0),1( =η−=ξΩ=η=ξΩ   
 (7.22) 
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Solution of the problem (7.21)-(7.23) requires to 
perform sufficiently cumbersome calculations for given 
values h and L (see [11]). Usually obtained solution has 
a form of unlimited series, which requires an 
approximate summing with definite error. Due to some 
reasons especially high requirements to precision of 
calculations appears unnecessary. Then, it has a sense to 
use more simple approximate methods of calculations. 
Seeking for the suitable form of the function ),( ηξΩ , 
assume the following symmetry:  

),(),(;),(),( ηξ−Ω−=ηξΩη−ξΩ−=ηξΩ . (7.24) 
Supposing the value ),( ηξΩ  even for parameter h, 

in future for the convenience one accepts temporarily 
0≥h . In accordance with (7.24), it is sufficient to 

consider the area 
L/10;10 ≤η≤≤ξ≤ . (7.25) 

The approximate solution of the problem (7.21)-
(7.23) is performed by us using the following model 
function: 

).()2/(),( ξλη=ηξΩ  (7.26) 
Substituting the form (7.26) into (7.23), one obtains 

the equation 

.1)()(
=ξλ+

ξ
ξλ

−
d

d
L
h  (7.27) 

In agreement with (7.22)  
.0)1( ==ξλ  (7.28) 

Solution of the problem (7.27), (7.28) is 
[ ]hL /)1(exp1)( ξ−−−=ξλ . (7.29) 

Thereof, it follows (see (7.26)):  
[ ]{ }hL /)1(exp1)2/(),( ξ−−−η=ηξΩ . (7.30) 

Using the formulae (7.20), (7.24), and (7.30), one 
obtains for an arbitrary sign of h the approximate 
solution for the dimensionless potential over the whole 
area ( 11 ≤ξ≤−  and LL /1/1 ≤η≤− ): 

( )[ ]{ }hLh /1exp1)2/()2/(),( −ξ−η+ξ=ηξω . (7.31) 
Note also (see (7.14) and (7.20)): 

( )]/exp1)[2/()()( hLLh −−=ω−=ω −+ . (7.32) 
The function (7.31) is not a precise solution of the 

problem (7.17)-(7.19). It satisfies the corresponding 
boundary conditions but does not satisfy precisely the 
Laplas equation (7.17). But at the condition hL >> , the 

structure ]/),([]/),([ 2222 η∂ηξω∂+ξ∂ηξω∂  with the 
form (7.31) practically in the whole area is exponentially 
small value. The limit transition ∞→L  gives well 
known result. Note also that, at the condition hL << , 
the function (7.31) is also an approximate solution of a 
good manner for the Laplas equation. 

It follows from the form (7.31) that distribution 
along y-axis of electric potential, dependent on magnetic 
field, is determined by the parameter h, along x-axis − by 
the parameter hL / . 

Introducing the formulae (7.31) and (7.32) into the 
expressions (7.15) and (7.16), one obtains the following 
forms: 

);()/()( )( LhGenH σ⋅β=σ ,   

);()( )(
1 LhGencR RH ⋅= − , (7.33) 

where 

( ){ })/exp(11
1

1),( 2
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h
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+
=σ ; (7.34) 

[ ]
( ))/exp(11

)/exp(1)1(),( 2

2

)( hLh
hLhLhG R −−+

−−+
= . (7.35) 

Note that 1);()( →∞→LhG R  and 

1);()( →∞→σ LhG . The functions (7.34) and (7.35) 
depend on two arguments: dimensionless magnetic field 
h and ratio of two geometrical sizes L. The factors 

);()( LhG σ  and );()( LhG R  have to be considered as 
geometrical factors for “longitudinal” 
magnetoconductivity and “Hall constant”.  

The geometrical factor of magnetoresistance 
),()( LhG ρ  is introduced as 

),(/1),( )()( LhGLhG σρ = . (7.36) 
Note that to the relation 

.),(/),(
),(/),(),(

)()( LGLhG
LRLhRLhr

RR

HH

∞=
=∞=

 (7.37) 

one usually gives the title Hall factor. It follows from 
Eqs. (7.33)-(7.35) that the influence of magnetic field on 
longitudinal conductivity and Hall constant of 
monopolar crystal is related with a limited ratio of sizes 
of the crystal. 

It is seen from Figs. 5 and 6 (the calculations were 
performed using the formulae (7.34) and (7.35)) that 
longitudinal conductivity and Hall coefficient in 
extremely long specimen ( )/ ∞→= Lll yx  do not 
depend on the intensity of magnetic field. If the 
specimen is short, longitudinal conductivity and Hall 
coefficient decrease with increasing the magnetic field. 
At very high magnetic fields, the Hall coefficient tends 
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Fig. 5. Dependence of the geometrical factor for magnetoconductivity on the ratio of geometrical sizes of crystal (L) and on the 
value of magnetic field (h). 

 
Fig. 6. Dependence of the geometrical factor for the Hall constant (a) and Hall factor (b) on the value of magnetic field for 
various ratios of crystal geometrical sizes. 
 

 
Fig. 7. Comparison of exact (a) and approximate (b) dependences for the geometrical factor of magnetoconductivity on the 
value of magnetic field. 1) L = 1, 2) L = 1.5, 3) L = 2, 4) L = 3, 5) L = 5, 6) L = ∞. 

 
 
 

 

to constant value that depends only on the value of 
ratio L. Magnetoconductivity does not approach 
saturation and sufficiently decreases when magnetic 
field rises.  

The Figs 7a and 8a show geometrical factors for 
magnetoconductivity and the Hall coefficient precisely 
calculated for the problem (7.7)-(7.9) by totally 
numerical way (see Ref. [12]). Figs 7b and 8b show the 
same patterns calculated using the model potential 
(7.31). It is seen that distinction between figures (a) and 
(b) is not so large (especially for high L). The good 
agreement of results obtained by exact and approximate 

ways is not occasional. The used approximate form of 
electrical potential provides continuity of current at all 
the boundaries of crystal, where that is really necessary. 

Presented here Figs. 7 and 8 show that in short 
crystals magnetic field influences impressivebly on 
conductivity and the Hall constant of crystal.  

8. Discussion 

It was shown above that in unlimited neutral graphene 
crystal Hall effect is absent, while magnetoresistance is 
present; in unlimited monopolar graphene the situation is 
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Fig. 8. Comparison of exact (a) and approximate (b) dependences for the geometrical factor of the Hall constant on the ratio of 
crystal geometrical sizes.  
1) h = 1.428, 2) h = 3.732, 3) h = 11.43, 4) h = 19.08. 

totally opposite: Hall effect is present, but 
magnetoresistance is absent. In a space-limited crystal 
(ratio length to width is not too high), Hall effect and 
magnetoresistance are present both in neutral and 
monopolar crystals. 

Appendix  

As external scattering system, we consider here 
impurities distributed uniformly in plane z = 0 with the 
density )2(

In .  
A1. “Neutral” hydrogen-like impurities 
 with the density )2(

NIn   
Three-dimensional potential of individual impurity 

is (see Ref. [9]) 
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After Fourier transformation, one obtains: 
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For ⊥>> qqB  (see also Ref. [6]),  
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⊥
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A2. Charged impurities with density )2(
CIn  

In this case (see Ref. [6]), 
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