Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 2. P. 117-122.
DOI: https://doi.org/10.15407/spqeo16.02.117


References

1. J. Bromage, Raman amplification for fiber communications systems. J. Light. Techn., 20(1), p. 79-93 (2004).
 
2. C. Rivero, High gain/broadband oxide glasses for next generation Raman amplifiers: Diss. for the degree of PhD, Univ. of Central Florida, 2005.
 
3. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E.Rabarijaona. IEEE Phot. Techn. Lett., 11(5), p. 530-532 (1999).
https://doi.org/10.1109/68.759388
 
4. C. Lin, R.H. Stolen, W.G. French and T.G. Malone, A cw tunable near-infrared (1.085-1.175-µm) Raman oscillator. Opt. Lett., 1(3), p. 96-97 (1977).
https://doi.org/10.1364/OL.1.000096
 
5. R.H. Stolen, C. Lin, J. Shan and R.F. Leheny, A fiber Raman ring laser. IEEE J. Quant. Electron., 14(11), p. 860-862 (1978).
https://doi.org/10.1109/JQE.1978.1069713
 
6. A. Bertoni, G.C. Reali, 1.24-μm cascaded Raman laser for 1.31-μm Raman fiber amplifiers. Appl. Phys. B, 67, p. 5-10 (1998).
https://doi.org/10.1007/s003400050466
 
7. S.D. Jackson, P.H. Muir, Theory and numerical simulation of n-th order cascaded Raman fiber lasers. J. Opt. Soc. Am. B, 18(9), p. 1297-1306 (2001).
https://doi.org/10.1364/JOSAB.18.001297
 
8. G.S. Felinskyi, P.A. Korotkov, Raman threshold and optical gain bandwidth in silica fibers. Semiconductor Physics, Quantum Electronics & Optoelectronics, 11(4), p. 360-363 (2008).
 
9. G.S. Felinskyi, P.A. Korotkov, Lasing threshold for stimulated Raman generation of monochrome optical wave in single mode fibers. Proc. 7th Intern. Conf. on Laser and Fiber-Optical Networks Modeling, June 29 – July 1, 2006, Kharkiv, p. 110-112.
https://doi.org/10.1109/lfnm.2006.251995
 
10. A.S. Samra, H.A.M. Harb, Wide band flat gain Raman amplifier for DWDM communication systems. Proc. IFIP Intern. Conf. on Wireless and Optical Comm. Networks, April 28-30, Cairo, p. 1-5 (2009).
https://doi.org/10.1109/wocn.2009.5010542
 
11. P.A. Korotkov, G.S. Felinskyi, Forced-Raman-scattering-based amplification of light in one-mode quartz fibers. Rev. Ukr. J. Phys. 5(2), p. 103-169 (2009).
 
12. G.P. Agrawal, Nonlinear Fiber Optics, Second ed. Academic Press, San Diego, CA, 1995.
 
13. V. I. Grygoruk, P.A. Korotkov, G.S. Felinskyi, Nonlinear and Laser Processes in Optical Fibers. VPC "Kyivskyi universytet", Kyiv, 2008 (in Ukrainian).
 
14. M. Islam (ed.), Raman Amplifiers for Telecommunications 2: Sub-systems and Systems. Springer-Verlag, New York, 2004.
 
15. C. Headley, G.P. Agrawal, Raman Amplification in Fiber Optical Communication Systems. Elsevier Academic Press, San Diego, CA, 2005.
 
16. J. Bromage, K. Rottwitt and M.E. Lines, A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles. IEEE Photonics Techn. Lett., 14(1), p. 24-26 (2002).
https://doi.org/10.1109/68.974149
 
17. M. Dyriv, P. Korotkov, G. Felinskyi, Raman gain profile simulation in single-mode fibers using spectral decomposition. Bull. of Taras Shevchenko Nat. Univ. of Kyiv, Radiophysics and Electronics, 18, p. 15-18 (2012), in Ukrainian.