Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 2. P. 146-151.
References 1. W.F. Kuhs, R. Nitsche, K. Scheunemann, Vapour growth and lattice data of new compounds with icosahedral structure of the type Cu6PS5Hal (Hal = Cl, Br, I). Mater. Res. Bull. 11, p. 1115-1124 (1976).https://doi.org/10.1016/0025-5408(76)90010-6 2. W.F. Kuhs, R. Nitsche, K. Scheunemann, The argyrodites – a new family of the tetrahedrally close-packed srtuctures. Mater. Res. Bull. 14, p. 241-248 (1979). https://doi.org/10.1016/0025-5408(79)90125-9 3. T. Nilges, A. Pfitzner, A structural differentiation of quaternary copper argirodites: Structure – property relations of high temperature ion conductors. Z. Kristallogr. 220, p. 281-294 (2005). 4. I.P. Studenyak, M. Kranjčec, Disordering Effects in Superionic Conductors with Argyrodite Structure. Publ. House "Hoverla", Uzhhorod, 2006 (in Ukrainian). 5. I.P. Studenyak, V.O. Stefanovich, M. Kranjčec, Yu.M. Azhnyuk, Gy.Sh. Kovacs, V.V. Panko, Raman scattering studies of Cu6PS5Hal (Hal = Cl, Br, I) fast-ion conductors. Solid State Ionics, 95, p. 221-225 (1997). https://doi.org/10.1016/S0167-2738(96)00477-8 6. A. Gagor, A. Pietraszko, D. Kaynts, Diffusion paths formation for Cu ions in superionic Cu6PS5I single crystals studied in terms of structural phase transition. J. Solid State Chem. 178, p. 3366-3375 (2005). https://doi.org/10.1016/j.jssc.2005.08.015 7. I.P. Studenyak, M. Kranjčec, Gy.S. Kovacs, V.V. Panko, I.D. Desnica, A.G. Slivka, P.P. Guranich, The effect of temperature and pressure on the optical absorption edge in Cu6PS5X (X = Cl, Br, I) crystals. J. Phys. Chem. Solids, 60, p. 1897-1904 (1999). https://doi.org/10.1016/S0022-3697(99)00220-6 8. I.P. Studenyak, M. Kranjčec, M.V. Kurik, Urbach rule and disordering processes in superionic conductors. J. Phys. Chem. Solids, 67, p. 807-817 (2006). https://doi.org/10.1016/j.jpcs.2005.10.184 9. I.P. Studenyak, M.I. Kayla, M. Kranjčec, O.P. Kokhan, and Yu.V. Minets, Isoabsorption and spectrometric studies of optical absorption edge in Cu6AsS5I superionic crystal. J. Phys. Chem. 72, p. 1419-1422 (2011). https://doi.org/10.1016/j.jpcs.2011.08.012 10. A.F. Orliukas, A. Kezionis, E. Kazakevicius, T. Salkus, M.I. Kayla, M. Kranjčec, I.P. Studenyak, Electrical conductivity of superionic composites based on solutions. Solid State Ionics, 2013 (to be published). https://doi.org/10.1016/j.ssi.2013.02.007 11. I.P. Studenyak, M. Kranjčec, Gy.Sh. Kovacs, V.V. Panko, V.V. Mitrovcij, O.A. Mikajlo, Structural disordering studies in Cu6+δPS5I single crystals. Mat. Sci. & Eng. B97, p. 34-38 (2003). https://doi.org/10.1016/S0921-5107(02)00392-6 12. F. Urbach, The long-wavelength edge of photographic sensitivity and electronic absorption of solids. Phys. Rev. 92, p. 1324-1326 (1953). https://doi.org/10.1103/PhysRev.92.1324 13. M.V. Kurik, Urbach rule (Review). Phys. Status Solidi (a), 8, p. 9-30 (1971). https://doi.org/10.1002/pssa.2210080102 14. M. Beaudoin, A.J.G. DeVries, S.R. Johnson, H. Laman, T. Tiedje, Optical absorption edge of semi-insulating GaAs and InP at high temperatures. Appl. Phys. Lett. 70, p. 3540-3542 (1997). https://doi.org/10.1063/1.119226 15. Z. Yang, K.P. Homewood, M.S. Finney, M.A. Harry, K.J. Reeson, Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2. J. Appl. Phys. 78, p. 1958-1963 (1995). https://doi.org/10.1063/1.360167 16. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Disorder and the optical-absorption edge of hydrogenated amorphus silicon. Phys. Rev. Lett. 47, p. 1480-1483 (1981). https://doi.org/10.1103/PhysRevLett.47.1480 |