Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N 2. P. 109-129.
https://doi.org/10.15407/spqeo17.02.109


                                                                 

References

1. E.M. Purcell, Spontaneous emission probabilities at radio frequencies . Phys. Rev. 69 (11-12), p. 681 (1946).
 
2. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics . Phys. Rev. Lett. 58(20), p. 2059-2062 (1987).
https://doi.org/10.1103/PhysRevLett.58.2059
 
3. L. Esaki and R. Tsu, Superlattice and negative differential conductivity in semiconductors . IBM J. Res. Dev. 14(1), p. 61-65 (1970).
https://doi.org/10.1147/rd.141.0061
 
4. R. Tsu, Applying the insight into superlattices and quantum wells for nanostructures: Low-dimensional structures and devices . Microelectron. J. 38(10-11), p. 959-1012 (2007).
https://doi.org/10.1016/j.mejo.2007.07.102
 
5. R. Tsu, Superlattices: problems and new opportunities, nanosolids . Nano. Res. Lett. 6(1), p. 127(10), (2011).
 
6. H.G. Roskos, Coherent emission of electromagnetic pulses from Bloch oscillations in semiconductor superlattices, Advances in Solid State Physics. Vol. 34, p. 297. Edited by R. Helbig, Berlin Heidelberg, Springer, 1994.
 
7. K. Leo, Interband optical investigation of Bloch oscillations in semiconductor superlattices . Semicond. Sci. Technol. 13(3), p. 249-263 (1998).
https://doi.org/10.1088/0268-1242/13/3/003
 
8. E.E. Mendez and G. Bastard, Wannier-Stark ladders and Bloch oscillations in superlattices . Phys. Today, 46(6), p. 34-42 (1993).
https://doi.org/10.1063/1.881353
 
9. T. Dekorsy, R. Ott, H. Kurz, and K. Kohler, Bloch oscillations at room temperature . Phys. Rev. B, 51(23), p. 17275-17278(R) (1995).
 
10. P. Robrish, J. Xu, S. Kobayashi, P.G. Savvidis, B. Kolasa, G. Lee, D. Mars, and S.J. Allen, Loss and gain in Bloch oscillating super-lattices: THz Stark ladder spectroscopy . Physica E, 32(1-2), p. 325-328 (2006);
https://doi.org/10.1016/j.physe.2005.12.060
 
11. P.G. Savvidis, B. Kolasa, G. Lee, and S.J. Allen, Resonant crossover of terahertz loss to the gain of Bloch oscillating InAs/AlSb superlattice . Phys. Rev. Lett. 92(19), 196802(4) (2004).
 
12. T. Hyart, N.V. Alexeeva, J. Mattas, and K.N. Alekseev, Terahertz Bloch oscillator with a modulated bias . Phys. Rev. Lett. 102(14), 140405(4), (2009).
 
13. K.F. Renk, Basics of Laser Physics. Springer-Verlag, Berlin, 2012. Superlattice Bloch laser: A Challenge, Part V, Semiconductor lasers, Ch. 32, p. 539.
https://doi.org/10.1007/978-3-642-23565-8
 
14. V.N. Sokolov, G.J. Iafrate, and J.B. Krieger, Microcavity enhancement of spontaneous emission for Bloch oscillations . Phys. Rev. B, 75(4), 045330(6), (2007).
 
15. V.N. Sokolov and G.J. Iafrate, Spontaneous emission of Bloch oscillation radiation in the terahertz regime, Chap. 6, in: Handbook of Nanoscience, Engineering and Technology. 3 ed., Eds. W.A. Goddard et al., CRC Press, New York, 2011, p. 67-124.
 
16. V.N. Sokolov, L. Zhou, G.J. Iafrate, and J.B. Krieger, Spontaneous emission of Bloch oscillation radiation from a single energy band . Phys. Rev. B, 73(20), 205304(11), (2006).
 
17. T. Unuma, N. Sekine, and K. Hirakawa, Dephasing of Bloch oscillating electrons in GaAs-based superlattices due to interface roughness scattering . Appl. Phys. Lett. 89(16), 161913(3), (2006).
 
18. Y.T. Chiu, Y. Dikmelik, P.Q. Liu, N.L. Aung, J.B. Khurgin, and C.F. Gmachl, Importance of interface roughness induced intersubband scattering in mid-ifrared quantum cascade lasers . Appl. Phys. Lett. 101(17), 171117(4), (2012).
 
19. M.P. Semtsiv, Y. Flores, M. Chashnikova, G. Monastyrskyi, and W.T. Masselink, Low-threshold intersubband laser on interface-scattering-rate engineering . Appl. Phys. Lett. 100(16), 163502(3), (2012).
 
20. M.P. Telenkov and Y.A. Mityagin, A microscopic model of sequential resonant tunneling transport through weakly coupled superlattices . Sov. Phys. JETP, 99(3), p. 620-632 (2004) [Zh. Eksp. Teor. Fiz. 126(3), p. 712-726 (2004), in Russian].
https://doi.org/10.1134/1.1809691
 
21. V.N. Sokolov and G.J. Iafrate, Spontaneous emission of Bloch oscillation radiation under the competing influences of microcavity enhancement and inhomogeneous interface degradation . J. Appl. Phys. 115 (5), 054307 (12), (2014).
 
22. J.B. Krieger and G.J. Iafrate, Time evolution of Bloch electrons in a homogeneous electric field . Phys. Rev. B, 33(8), p. 5494-5500 (1986).
https://doi.org/10.1103/PhysRevB.33.5494
 
23. G.J. Iafrate and J.B. Krieger, Quantum transport for Bloch electrons in inhomogeneous elecric fields . Phys. Rev. 40(9), p. 6144-6148 (1989).
https://doi.org/10.1103/PhysRevB.40.6144
 
24. D. Marcuse, Principles of Quantum Electronics. Academic, New York, 1980, p. 426.
 
25. N. Marcuvitz, Waveguide Handbook. Peregrinus, London, 1993.
 
26. W.H. Louisell, Quantum Statistical Properties of Radiation. Wiley and Sons, New York, 1973, p. 57.
 
27. J. He and G.J. Iafrate, Multiband theory of Bloch-electron dynamics in a homogeneous electric field . Phys. Rev. B, 50(11), p. 7553-7566 (1994).
https://doi.org/10.1103/PhysRevB.50.7553
 
28. E. Merzbacher, Quantum Mechanics. Wiley and Sons, New York, 1970, p. 484-485; Ref. [26], p. 288.
 
29. C. Kittel, Quantum Theory of Solids. Wiley and Sons, New York, 1963, p. 185, Eq. (49) therein.
 
30. I. Dharssi and P.N. Butcher, Interface roughness scattering in a superlattice . J. Phys.: Condens. Matter, 2(20), p. 4629-4635 (1990).
https://doi.org/10.1088/0953-8984/2/20/009
 
31. G. Fishman and D. Calecki, Surface-induced resistivity of ultrathin metalic films: A limit law . Phys. Rev. Lett. 62(11), p. 1302-1305 (1989).
https://doi.org/10.1103/PhysRevLett.62.1302
 
32. G. Kastrinakis, Interface roughness and planar doping in superlattices: weak localization effects . Solid State Communs. 125(10), p. 533-536 (2003).
https://doi.org/10.1016/S0038-1098(03)00003-6
 
33. R.E. Prange and T.-W. Nee, Quantum spectroscopy of the low-field oscillations in the surface impedance . Phys. Rev. 168(3), p. 779-786 (1968).
https://doi.org/10.1103/PhysRev.168.779
 
34. S.M. Goodnick, D.K. Ferry, C.W. Wilmsen, Z. Liliental, D. Fathy, and O.L. Krivanek, Surface roughness at the Si(100)-SiO2 interface . Phys. Rev. B, 32(12), p. 8171-8186 (1985).
https://doi.org/10.1103/PhysRevB.32.8171
 
35. G.N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge, University Press, 1944, p. 22.
 
36. D.K. Ferry, Semiconductor Transport. Taylor and Francis, New York, 2000, p. 87.
 
37. J. He and G.J. Iafrate, The effects of band structure and electric field on resonant tunneling dynamics, in Quantum Transport in Ultrasmall Devices. NATO ASI series, Series B, Theory; Physics, Vol. 342, Eds. D.K. Ferry et al., Plenum, New York, 1995, p. 281.
https://doi.org/10.1007/978-1-4615-1967-6_14
 
38. M.O. Scully and M.S. Zubairy, Quantum Optics. Cambridge, 1997, p. 282-285.
https://doi.org/10.1017/CBO9780511813993
 
39. P.M. Morse and H. Feshbach, Methods of Theoretical Physics. McGraw-Hill, New York, 1953, part 1, p. 467.
 
40. V. Holy and T. Baumbach, Nonspecular x-ray reflection from rough multilayers . Phys. Rev. B, 49(15), p. 10668-10676 (1994).
https://doi.org/10.1103/PhysRevB.49.10668
 
41. G. Palasantzas and J.Th.M. De Hosson, Effect of roughness on the conductivity of semiconducting thin films/quantum wells with double rough boundaries . J. Appl. Phys. 93(1), p. 320-324 (2003).
https://doi.org/10.1063/1.1522490
 
42. I.A. Dmitriev and R.A. Suris, Dephasing of Bloch oscillations in quantum dot superlattices: A general approach . Semiconductors, 36(12), p. 1364-1374 (2002) [Fizika Tekhnika Poluprovodn. 36(12), p. 1449-1459 (2002), in Russian].
https://doi.org/10.1134/1.1529248
 
43. V.G. Talalaev, G.E. Cirlin, A.A. Tonkikh, N.D. Zakharov, P. Werner, U. Gosele, J.W. Tomm, and T. Elsaesser, Miniband-related 1.4-1.8 µm luminiscence of Ge/Si quantum dot superlattices . Nano. Res. Lett. 1, p. 137-153 (2006).
https://doi.org/10.1007/s11671-006-9004-x
 
44. C.-H. Park, L. Yang, Y.-W. Son, M.L. Cohen, and S.G. Louie, Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials . Nature Phys. 4, p. 213-217 (2008).
https://doi.org/10.1038/nphys890
 
45. H. Sevincli, M. Topsakal, and S. Ciraci, Super­lattice structure of graphene-based armchair nano­ribbons . Phys. Rev. B, 78(24), 245402(8), (2008).
 
46. D. Dragoman and M. Dragoman, Terahertz Bloch oscillations in periodic graphene structures . Appl. Phys. Lett. 93(10), p. 103105(3) (2008).
 
47. V.I. Sankin, Wannier-Stark localization in the natural superlattice of silicon carbide polytypes . Semiconductors, 36(7), p. 717-739 (2002) [Fizika Tekhnika Poluprovodn. 36(7), p. 769-793 (2002), in Russian].
https://doi.org/10.1134/1.1493739
 
48. R.A. Suris and I.A. Dmitriev, Bloch oscillations in quantum dot superlattices . Phys. Usp. 46(7), p. 745-751 (2003) [Uspekhi Fiz. Nauk, 173(7), p. 769-76 (2003), in Russian].
https://doi.org/10.1070/PU2003v046n07ABEH001608
 
49. Yu.A. Romanov and Yu.Yu. Romanova, Bloch oscillations in superlattices: The problem of a terahertz oscillator . Semiconductors, 39(1), p. 147-155 (2005) [Fizika Tekhnika Poluprovodn. 39(1), p. 162-170 (2005), in Russian].
https://doi.org/10.1134/1.1852666
 
50. S.K. Lyo, Bloch oscillations and nonlinear transport in a one-dimensional semiconductor superlattice . Phys. Rev. B, 77(19), 195306(8), (2008).