Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N 2. P. 134-148.
https://doi.org/10.15407/spqeo17.02.134


                                                                 

References

1. O.D. Miller, E. Yablonovitch and S.R. Kurtz, Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit . IEEE J. Photovoltaics, 2(3), p. 303-311 (2012).
https://doi.org/10.1109/JPHOTOV.2012.2198434
 
2. O. Miller Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design, Doctoral dissertation. University of California, Berkeley, USA, 2012, 137 p.
 
3. I. Schnitzer, E. Yablonovitch, C. Caneau and T.J. Gmitter, Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AIGaAs/GaAs/AIGaAs double heterostructures . Appl. Phys. Lett. 62(2), p. 131-133 (1993).
https://doi.org/10.1063/1.109348
 
4. D. Ding, S.R. Johnson, S.-Q. Yu, S.-N. Wu and Y.-H. Zhang, A semi-analytical model for semiconductor solar cells . J. Appl. Phys. 110, 123104 (2011).
https://doi.org/10.1063/1.3671061
 
5. H.C. Casey, D.D. Sell, and K.W. Wecht, Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV. J. Appl. Phys. 46(1), p. 250-257 (1975).
https://doi.org/10.1063/1.321330
 
6. W. Van Roosbroeck, W. Shokley, Photon-radiative recombination of electrons and holes in germanium . Phys. Rev. 94(6), p. 1558-1560 (1954).
https://doi.org/10.1103/PhysRev.94.1558
 
7. G.B. Lush, H.F. MacMillan, B.M. Keyes, D.H. Levi, R.K. Ahrenkiel, M.R. Melloch and M.S. Lundstrom, A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition . J. Appl. Phys. 72(4), p. 1436-1442 (1992).
https://doi.org/10.1063/1.351704
 
8. Hiroshi Ito, Tomofumi Furuta and Tadao Ishibashi, Minority electron lifetimes in heavily doped p-type GaAs grown by molecular beam epitaxy . Appl. Phys. Lett. 58(25), p. 2936-2938 (1991).
https://doi.org/10.1063/1.104727
 
9. A.L. Fahrenbruch and R.H. Bube. Fundamentals of Solar Cells. Photovoltaic Solar Energy Conversion. New York, 1983.
 
10. H. Nie, B.M. Kayes and I. Kizilyalli, Optoelectronic devices including heterojunction. EP Patent 2,450,956.
 
11. A.P. Gorban, A.V. Sachenko, V.P. Kostylyov and N.A. Prima, Effect of excitons on photoconversion efficiency in the p+-n-n+- and n+-p-p+-structures based on single-crystalline silicon . Semiconductor Physics, Quantum Electronics and Optoelectronics, 3(3), p. 322-329 (2000).
 
12. S.M. Sze and Kwok K. Ng, Physics of Semiconductor Devices, 3rd Ed. John Wiley and Sons, 2007.
 
13. A.P. Gorban, V.P. Kostylyov, A.V. Sachenko, O.A. Serba, I.O. Sokolovskyi, V.V. Chernenko, Effect of floating p-n junctions on the efficiency of silicon back side contact solar cells . Ukr. J. Phys. 55(7), p. 783-790 (2010).
 
14. B.M. Kayes, H. Nie, R. Twist, S.G. Spruytte, F. Reinhardt, I.C. Kizilyalli, G.S. Higashi, 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination . Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE , p. 000004-000008, June 19-24, 2011.
https://doi.org/10.1109/pvsc.2011.6185831
 
15. P.A. Folkes, B. Connelly and F. Towner, Minority carrier lifetime and interfacial recombination velocity in GaAs/AlGaAs double heterostructures . ARL-TR-6186 Report.
 
16. R.I. Jioev, K.V. Kavokin, Optical measurement of diffusion length and electron surface recombination velocity in the p-GaAs layers . Fizika i tekhnika poluprovodnikov, 33(10), p. 2928-2931 (1991), in Russian.
 
17. T. Tiedje, E. Yablonovitch, G.D. Cody and B.J. Brooks, Limiting efficiency of silicon solar cells . IEEE Trans. on Electron Devices, 31(5), p. 711-716 (1984).
https://doi.org/10.1109/T-ED.1984.21594
 
18. T. Trupke, J. Zhao, A. Wang, R. Corkish, M.A. Green, Very efficient light emission from bulk crystalline silicon . Appl. Phys. Lett. 82, p. 2996-2998 (2003).
https://doi.org/10.1063/1.1572473
 
19. A.V. Sachenko, A.P. Gorban, V.P. Kostylev, I.O. Sokolovskii, Quadratic recombination in silicon and its influence on the bulk lifetime . Semiconductors, 41(3), p. 281-284 (2007).
https://doi.org/10.1134/S1063782607030074
 
20. A.V. Sachenko, A.P. Gorban, V.P. Kostylyov, I.O. Sokolovsky, The radiative recombination coefficient and the internal quantum yield of electroluminescence in silicon . Semiconductors, 40(8), p. 884-889 (2006).
https://doi.org/10.1134/S1063782606080045
 
21. E. Yablonovitch and T. Gmitter, Auger recombination in silicon at low carrier densities . Appl. Phys. Lett. 49(10), p. 587-589 (1986).
https://doi.org/10.1063/1.97049
 
22. E. Yablonovitch, D.L. Allara, C.C. Chang, T. Gmitter and T.B. Bright, Unusually low surface-recombination velocity on silicon and germanium surfaces . Phys. Rev. Lett. 57(2), p. 249-252 (1986).
https://doi.org/10.1103/PhysRevLett.57.249
 
23. M.A. Green, The path to 25% silicon solar cell efficiency: History of silicon cell evolution . Progr. Photovolt.: Res. Appl. 17(3), p. 183-189 (2009).
https://doi.org/10.1002/pip.892
 
24. T. Sawada, N. Terada, Sadaji Tsuge, Baba Toshiaki, T. Takahama, Kenichiro Wakisaka, Shinya Tsuda, Shoichi Nakano, High-efficiency a-Si/c-Si heterojunction solar cell . 1994 IEEE First World Conference on Photovoltaic Energy Conversion, Conference Record of the Twenty Fourth IEEE Photovoltaic Specialists Conference, p.1219-1226 (1994).
 
25. A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, M. Taguchi, E. Maruyama, 24.7% record efficiency HIT solar cell on thin silicon wafer . 28th European Photovoltaic Solar Energy Conference and Exhibition, September 30 - October 4, 2013, Paris, France, p. 748-751.
 
26. R.M. Swanson, Approaching the 29% limit efficiency of silicon solar cells . 20 European Photovoltaic Conference, June 6-10, 2005, Barcelona, Spain, p. 584-589.
https://doi.org/10.1109/pvsc.2005.1488274