Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N 2. P. 155-159.
https://doi.org/10.15407/spqeo17.02.155


                                                                 

References

1. http://www.imicronews.com/upload/Rapports/Yole_ Patentanalysis_of_SiC_single_crystal_wafer_and_epiwafer_manufacturer_July_sample_2012.pdf
 
2. Fei Yan, dissertation "Low Temperature Study on Defect Centers in Silicon Carbide", University of Pittsburgh, 2009 (Dissertation LTPL-Choyke Pittsburg 2009 pdf).
 
3. W.J. Choyke, H. Matsunami, Silicon Carbide: Recent Major Advances books.google.co.kr/ books?isbn=3540404589 Gerhard Pensl - 2004.
 
4. P. Pirouz, M. Zhang, H. McD. Hobgood, M. Lancin, J. Douin, and B. Pichaud, Nitrogen doping and multiplicity of stacking faults in SiC . Phil. Mag. A, 86 (29-31), p. 4685-4697 (2006).
https://doi.org/10.1080/14786430600724470
 
5. S.I. Vlaskina, D.H. Shin, 6H to 3C polytype transformation in silicon carbide . Jpn. J. Appl. Phys. 38, p. 27-29 (1999).
https://doi.org/10.1143/JJAP.38.L27
 
6. I.S. Gorban and G.N. Mishinova, Basics of luminescent diagnostics of the dislocation structure of SiC crystals . Proc. SPIE, 3359, p. 187 (1998).
https://doi.org/10.1117/12.306212
 
7. A. Galeckas, H. K. Nielsen, J. Linnros, A. Halln, B.G. Svensson, and P. Pirouz, Investigation of stacking fault formation in hydrogen bombarded 4H-SiC . Mater. Sci. Forum, 483-485, p. 327-330 (2005).
https://doi.org/10.4028/www.scientific.net/MSF.483-485.327
 
8. S.I. Maximenko, T. Sudarshan, and P. Pirouz, Investigation of the electrical activity of partial dislocations in SiC p-i-n diodes . Appl. Phys. Lett. 87(3), 033503-0 - 033503-3 (2005).
 
9. A. Galeckas, J. Linnros, P. Pirouz, Recombination induced stacking faults: Evidence for a general mechanism in hexagonal SiC . Phys. Rev. Lett. 96(2), 025502-1 - 025502-4 (2006).
 
10. S.I. Maximenko, P. Pirouz, and T.S. Sudarshan, Open core dislocations and surface energy of SiC . Mater. Res. Forum, 527-529, p. 439-442 (2006).
 
11. H. Idrissi, B. Pichaud, G. Regula, and M. Lancin, 30° Si partial dislocation mobility in nitrogen-doped 4H-SiC. J. Appl. Phys. 101, 113533 (2007).
https://doi.org/10.1063/1.2745266
 
12. G.R. Fisher, P. Barnes, Towards a unified view of polytypism in silicon carbide . Phil. Mag., Part B, 1463-6417, 61(2), p. 217-236 (1990).
 
13. Sh. Sugiyama, M. Togaya, Phase relationship between 3C- and 6H-silicon carbide at high pressure and high temperature . J. Amer. Cer. Soc. 84(12), p. 3013-3016 (2001).
https://doi.org/10.1111/j.1151-2916.2001.tb01129.x
 
14. S.I. Vlaskina, Mechanism of 6H-3C transformation in SiC . Semiconductor Physics, Quantum Electronics and Optoelectronics, 5(2), p. 252-255 (2002).
 
15. M. Durandurdu, An initio simulations of the structural phase transformation of 2H-SiC at high pressure . Phys. Rev. B, 75, 235204 (2007).
https://doi.org/10.1103/PhysRevB.75.235204
 
16. S.W. Lee, S.I. Vlaskina, V.I. Vlaskin, I.V. Zaharchenko, V.A. Gubanov, G.N. Mishinova, G.S. Svechnikov, V.E. Rodionov, S.A. Podlasov, Silicon carbide defects and luminescence centers in current heated 6H-SiC . Semiconductor Physics, Quantum Electronics and Optoelectronics, 13(1), p. 24-29 (2010).
 
17. C. Raffy, Furthmller and Beshtedt, Properties of interface between cubic and hexagonal polytypes in silicon carbide . J. Phys.: Condens. Matter, 14, p. 12725-12731 (2002).
https://doi.org/10.1088/0953-8984/14/48/309
 
18. S. Shinozaki, K.R. Kisman, Aspects of "one dimensional disorder" in silicon carbide . Acta Metallurgica, 26, p. 769-776 (1978).
https://doi.org/10.1016/0001-6160(78)90027-5
 
19. L.U. Ogbuji, T.E. Mitchell, A.H. Heuer, The β-α transformation in polycrystalline SiC: The thickening of α plates . J. Amer. Ceram. Soc. 64(2), p. 91-99 (1981).
https://doi.org/10.1111/j.1151-2916.1981.tb09583.x
 
20. S.I. Vlaskina, G.N. Mishinova, V.I. Vlaskin, V.E. Rodionov, G.S. Svechnikov, 6H-3C transformation in heated cubic silicon carbide 3C-SiC . Semiconductor Physics, Quantum Electronics and Optoelectronics, 14(4), p. 432-437 (2013).
https://doi.org/10.15407/spqeo14.04.432
 
21. S.I. Vlaskina, G.N. Mishinova, V.I. Vlaskin, G.S. Svechnikov, V.E. Rodionov, S.W. Lee, Silicon carbide phase transition in as-grown 3C-6H polytypes junction . Semiconductor Physics, Quantum Electronics and Optoelectronics, 16(2), p. 132-136 (2013).
https://doi.org/10.15407/spqeo16.02.132
 
22. S.I. Vlaskina, G.N. Mishinova, V.I. Vlaskin, V.E. Rodionov, G.S. Svechnikov, 8H-, 10H-, 14H-SiC formation in 6H-3C silicon carbide phase transitions . Semiconductor Physics, Quantum Electronics and Optoelectronics, 16(3), p. 272-278 (2013).
 
23. Kozuaki Kobayashi, Shojiro Komatsu. First-principle study of 8H-, 10H-, 12H-, ND 18H-SiC polytypes . J. Phys. Soc. Jpn. Appl. 024714 (2012).