Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N
2. P. 188-192.
References 1. L. Fornaro, E. Saucedo, L. Mussio, A. Gancharov, Growth of lead iodide platelets for room temperature X-ray detection by the vapor transport method . Proc. SPIE, 4507, p. 90-98 (2001).https://doi.org/10.1117/12.450745 2. C.E. Finlayson and P.J.A. Sazio, Highly efficient blue photoluminescence from colloidal lead-iodide nanoparticles . J. Phys. D: Appl. Phys. 39(8), p. 1477-1480 (2006). https://doi.org/10.1088/0022-3727/39/8/003 3. I.Kh. Akopyan, O.N. Volkova, B.V. Novikov, B.I. Venzel, Size effects in the optical spectra of the microcrystals PbI2 4. A.S. Ablitzova, V.F. Aguekian, A.Yu. Serov, Optical spectra of microcrystals of a layer semiconductor PbI2 in porous 5. A. Yamamoto, H. Nakahara, S. Yano, T. Goto, and A. Kasuya, Exciton dynamics in PbI2 ultra-thin microcrystallites . Phys. status solidi (b) 224(1), p. 301-305 (2001). https://doi.org/10.1002/1521-3951(200103)224:1<301::AID-PSSB301>3.0.CO;2-N 6. A.I. Savchuk, V.I. Fediv, Ye.O. Kandyba, T.A. Savchuk, I.D. Stolyarchuk, P.I. Nikitin, Platelet-shapped nanoparticles of PbI2 and PbMnI2 embedded in polimer matrix . Mat. Sci. Eng. C, 19(1-2), p. 59-62 (2002). https://doi.org/10.1016/S0928-4931(01)00439-8 7. N. Preda, L. Mihut, I. Baltog, T. Velula, V. Teodorescu, Optical properties of low-dimensional PbI2 particles embedded in polyacrylamide matrix . J. Optoelectron. & Adv. Materials, 8(3), p. 909-913 (2006). 8. N. Preda, L. Mihut, M. Baibarac, I. Baltog, Raman and photoluminescence studies on low-dimensional PbI2 particles embedded in polymer matrix . J. Optoelectron. & Adv. Materials, 9(5), p. 1358-1361 (2007). 9. I. Saikumar, Sh. Ahmad, J.J. Baumberg, G. Vijaya Prakash, Fabrication of excitonic luminescent inorganic-organic hybrid nano- and microcrystals . Scr. Mater. 67, p. 834-837 (2012). https://doi.org/10.1016/j.scriptamat.2012.07.048 10. R. Zheng, M. Matsuura, T. Taguchi, Exciton-LO-phonon interaction in zinc-compound quantum wells . Phys. Rev. B, 61 (15), p. 9960-9963 (2000). 11. R.T. Senger, K.K. Bajaj, Binding energy of excitons in II-VI compound-semiconductor based quantum well structures . Phys. status solidi (b), 241(8), p. 1896-1900 (2004). https://doi.org/10.1002/pssb.200402034 12. I.V. Ponomarev, L.I. Deych, V.A. Shuvayev, A.A. Lisyansky, Self-consistent approach for calculations of exciton binding energy in quantum wells . Physica E, 25, p. 539-553 (2005). https://doi.org/10.1016/j.physe.2004.08.111 13. V.M. Kramar, M.V. Tkach, Exciton-phonon interaction and exciton energy in semiconductor nanofilms . Ukr. J. Phys. 54(10), p. 1027-1035 (2009). 14. O.V. Pugantseva, V.M. Kramar, I.V. Fesiv, O.O. Kudryavtsev, Temperature changes of the exciton transition energy in lead di-iodide nanofilms . Semiconductor Physics, Quantum Electronics and Optoelectronics, 16(2), p. 170-176 (2013). https://doi.org/10.15407/spqeo16.02.170 15. M.V. Tkach, Quasi-particles in Nanoheterosystems. Quantum Dots and Wires: A Manual. Chernivtsi Univ. Press, Chernivtsi, 2003 (in Ukrainian). 16. O.V. Pugantseva, V.M. Kramar, Self-polarization effect and electron-phonon interaction contributions in forming of 17. M. Shinada, S. Sugano, Interband optical transitions in extremly anisotropic semiconductors . J. Phys. Soc. Jpn. 21 (10), p. 1936-1946 (1966). 18. L. Wendler, R. Pechstedt, Dynamical screening, collective excitations, and electron-phonon interaction in heterostructures and semiconductor quantum wells . Phys. status solidi (b) 141(1), p. 129-150 (1987). https://doi.org/10.1002/pssb.2221410112 19. N. Mori, T. Ando, Electron-optical-phonon interaction in single and double heterostructures . Phys. Rev. B, 40(9), p. 6175-6188 (1989). https://doi.org/10.1103/PhysRevB.40.6175 20. A.S. Davydov, Theory of Solids. Nauka, Moscow, 1976 (in Russian). 21. M.S. Brodin, I.V. Blonskii, Excitonic Processes in Layered Crystals. Naukova Dumka, Kiev, 1986 (in Russian). |