Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N 2. P. 193-199.
https://doi.org/10.15407/spqeo17.02.193


                                                                 

References

1. K.R. Jha, G. Singh, Terahertz planar antennas for future wireless communication: A technical review . Infrared Physics & Technology, 60, p. 71-80 (2013).
https://doi.org/10.1016/j.infrared.2013.03.009
 
2. M. Koch, Terahertz technology: A land to be discovered . Optics and Photonics News, 18(3), p. 20-25 (2007).
https://doi.org/10.1364/OPN.18.3.000020
 
3. A.G.U. Perera, G. Ariyawansa, S.G. Matsik, Terahertz detection devices, in: Comprehensive Semiconductor Science and Technology. Elsevier, Amsterdam, 6, p. 265-307 (2011).
https://doi.org/10.1016/B978-0-44-453153-7.00018-3
 
4. A. Rogalski, F. Sizov, Terahertz detectors and focal plane arrays . Optoelectronics Rev. 19(3), p. 79-137 (2011).
https://doi.org/10.2478/s11772-011-0033-3
 
5. M. Ghanashyam Krishna, Sachin D. Kshirsagar, Surya P. Tewari, Terahertz emitters, detectors and sensors: Current status and future prospects, in: Photodetectors. Ed. by Sanka Gateva, InTech, 2012, p. 115-144.
https://doi.org/10.5772/35898
 
6. A.V. Zorenko, Ya.Ya. Kudryk, Yu.V. Marunenko, Development and investigation of microwave radiation sources and detector sections using SBDs within the 220-400 GHz frequency range . Semiconductor Physics, Quantum Electronics & Optoelectronics, 14(4), p. 411-415 (2011).
https://doi.org/10.15407/spqeo14.04.411
 
7. R.R. Vakhitov, Digital Frequency Multipliers, Candidate of Technical Sci. Dissertation 05.13.05 (fundamental theory, mathematical models, investigation, development). Ufa, 2006 (in Russian).
 
8. J. Grajal, V. Krozer, E. Gonzalez, F. Maldonado, J. Gismero, Modeling and design aspects of millimeter-wave and submillimeter-wave Schottky diode varactor frequency multipliers . IEEE Trans. on Microwave Theory and Techniques, 48(4), p. 700-711 (2000).
https://doi.org/10.1109/22.841962
 
9. A. Gutin, T. Ytterdal, V. Kachorovskii, A. Muraviev, M. Shur, THz SPICE for modeling detectors and nonquadratic response at large input signal . IEEE Sensors J. 13(1), p. 55-62 (2013).
https://doi.org/10.1109/JSEN.2012.2224105
 
10. E.P. Groo, M.G. Ignatiev, L.A. Kozlova, T.C. Petrova, Technological aspects of a GaAs-based microwave mixer SBD, in: Modern Problems in Radio Electronics: A Collection of Scientific Papers. Ed. by A.I. Gromyko, A.V. Sarafanov, IPTs KGTU, 2005, p. 327 (in Russian).
 
11. B. Thomas, A. Maestrini, G. Beaudin, A low-noise fixed-tuned 300-360-GHz sub-harmonic mixer using planar Schottky diodes . IEEE Microw. Wirel. Compon. Lett. 15(12), p. 865-867 (2005).
https://doi.org/10.1109/LMWC.2005.859992
 
12. M.E. Belkin, L.M. Belkin, Features of constructing monolithic version of mm-wave resistive mixers . Elektronnaya Tekhnika, Ser. 2 "Poluprovodnikovye Pribory", no 1, p. 98-104 (2010), in Russian.
 
13. N.R. Erickson, T.M. Goyette, TeraHertz Schottky-diode balanced mixers . Proc. SPIE, 7215, Terahertz Technology and Applications II. Ed. by K.J. Linden, L.P. Sadwick, C.M.M. O'Sullivan, 721508 (2009).
 
14. A.V. Zorenko, N.V. Kolesnik, T.V. Kritskaya, Ya.Ya. Kudryk, Yu.V. Marunenko, L.P. Ryzhanovich, A subharmonic mixer for the 220-325 GHz frequency range . Semiconductor Physics, Quantum Electronics & Optoelectronics, 16(1), p. 84-85 (2013).
https://doi.org/10.15407/spqeo16.01.084