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Abstract. The most used methods such as ion implantation, laser irradiation and 
nanosphere lithography for modification and creation of special microrelief of thin 
absorbing films on photosensitive substrates have been described. Controlled 
modification of surface structure of the samples for improving their optical properties, 
especially for enhancing absorption, has many applications in optical devices. The basic 
things were analyzed from selection of film materials and ways for their further 
processing to shapes and dimensions of the obtained surface structures. Theoretical 
modeling methods based on the Mie theory and statistical temporal mode-coupled theory 
have been used to explain the influence of surface microrelief on optical properties of the 
samples. Advantages and perspectives for application of the methods have been 
described and analyzed.
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1. Introduction

Deposition of thin absorbing films plays a basic role for 
transformation of light energy to its other kinds for 
sensing elements of photodetectors, sensors, solar cells 
and other systems. Optical properties of thin films 
should satisfy requirements on transmission and 
absorption bands, reflection and refraction coefficients 
and adhesion of these films to the substrate. So, selection 
of the absorbing material, method of its deposition and 
further processing are the basic steps of sample 
preparation.

To enhance absorption of thin films, the critical 
requirement is the relation of dimensions of the 
structures a with the light wavelength . Thus, at a << 
the polar scattering diagrams are symmetrical. So, the 
intensity of light scattering is maximal and is the same in 
direction of forward and back and is minimal in the 
symmetry plane. Increasing а, the intensity of forward 
scattering is higher than that for back scattering (Mie 

effect) [1]. At a >> , the highest intensity of light 
scattering will be for the back one. It can be simply 
explained as shown in Fig. 1 and table [2]. So, for 
increasing absorption of thin films or surfaces of the 
samples, the dimensions of structures should be of the 
order of the wavelength. To fulfill this requirement, it is 
necessary to make appropriate processing of the surface. 

It can be used one of the proposed methods for 
surface modification: ion implantation, laser irradiation
and nanosphere lithography, etc. But the most effective 
method for different individual case should be specific, 
and its applicability should be analyzed.

2. Overview of methods

Ion implantation causes disposition of atoms in solid 
from their stationary locations. These atoms having 
enough kinetic energy became secondary bombardment 
particles and cause appropriate dispositions of other 
atoms in the lattice. As a result, a cascade of disposition 



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2014. V. 17, N 2. P. 209-212.

© 2014, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

210

of atoms can be formed. On its free path, the implanted 
ion may cause a lot of such cascades in the volume 
surrounding its track [3]. These avalanche processes 
cause radiation defects in the lattice and lead to 
appearance of an amorphous area and destroy the long-
range order in crystals [4]. In separate cases, ion 
implantation can lead even to phase transformations, 
which depends on material composition, energy and 
dose of implanted ions. Mechanism of blisters formation 
consists in deformation of subsurface layers of film 
under the pressure of inert gases that was implanted as 
ions into the sample. The coefficient of surface tension 
of the materials is decreased when necessary doses of 
implantation are reached, which increases the probability 
of blisters formation on the surface of sample. By 
selecting material composition, type, energy and dose of 
implantation as well as the temperature of materials and 
that of further thermal annealing, it is possible to reach 
large-scale blisters formation (Fig. 2) that will 
effectively increase optical absorption of the sample for 
various applications [5]. 

Fig. 1. (a) Light specularly reflecting from a flat surface. (b) 
Multiple reflections from protruding structures enhance 
coupling into the material, and refraction causes the light to 
prorogate at oblique angles, increasing the optical path 
length [2].

Fig. 2. Typical microrelief of thin Ni films on lithium niobate 
implanted by Ar+ ions with the energies of 100 keV [5].

Table. Multiple length scales over which reflectivity and 
absorption is determined by surface features.

Feature 
size

Influence on reflectivity

a >>  Light trapping due to multiple reflections 
enhances coupling into the material. Light 
refracted at oblique angles increases the 
effective optical path length

a   Small features can successively scatter light, 
increasing the effective optical path length and 
enhancing absorption

a <<  Subwavelength structures (SWS) can reduce 
reflections through the moth-eye effect

Laser irradiation along with ion implantation is one 
of new effective methods to modify the surface 
structure. One can use a pulsed power or CW laser with 
the system of scanning laser beam on the surface of the 
sample. Similar to the previous case, interaction of laser 
irradiation with solids is accompanied by effects of atom 
intermixing, hardening and generation of defects. But 
the dominant mechanism of intermixing by laser 
irradiation is diffusion in liquid phase, which takes the 
time when the surface is in the melted state. This is also 
related to systems metal-semiconductor. The diffusion in 
liquid phase takes time 105 less than that in the solid 
phase [6]. According to calculations, the radiation 
energy of applied laser melts solid to the maximal depth 
in its case. Then, with transferring the heat from the 
surface melt to the substrate bulk, the front of melting 
moves in the same direction. Estimation of the time 
when the sub-surface layer is kept in the state of the melt 
enables to determine the rate of hardening of the solid in 
the terms of temperature changes: 109…1010 K/s, 
sometimes up to 1014 K/s when using the UV lasers with 
shorter pulses. The typical structure of the surface as an 
example of Si processed by 800 nm 100 fs pulsed laser 
(10 kJ/m2) is shown in Fig. 3 [2]. Application of laser 
pulses to modify properties of sub-surface layers and 
structure of material surfaces can be successfully used to 
create structured surfaces as well as to improve 
absorbing properties of the samples.

Fig. 3. SEM images of the surface microstructuring of Si(100) 
by 500 laser pulses of the 200-mm diameter, nearly Gaussian 
beam (100 fs, 800 nm, 10 kJ/m2) (a) processed in vacuum and 
(b,c) in the 500-Torr atmosphere of SF6. Images viewed at the
angle 45º from the surface normal [2]. 
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Fig. 4. Illustration of the nanosphere lithography fabrication 
method. (a) Render of the hexahonal close-packed monolayer 
that is used as a deposition mask, and (b) render of the 
nanoparticle array that results after metal deposition and 
removal of the microsphere mask [7, 8].

Nanosphere lithography is the newest method to 
fabricate microstructures. Despite primary application of 
this method with localized surface plasmon resonance 
(LSPR), it can be successfully applied for coating surfaces 
with ordered micro- and nanostructures of required 
geometry for various applications. Nanosphere 
lithography has been used to produce inexpensive 
nanoparticle arrays, through the use of monolayers of self-
assembled microspheres as a deposition mask. However, 
lack of control over the location and size of the arrays, as 
well as poor uniformity over large areas, limit its use to 
research purposes. There are two prospective methods for 
large-area fabrication of nanoparticle arrays: convective 
self-assembly nanosphere lithography and geometrically 
confined nanosphere lithography. In geometrically 
confined nanosphere lithography method, microsphere 
assembly is confined to geometric patterns defined in 
photoresist. It was shown in the paper [7, 8] that 400-nm 
polystyrene microspheres can be assembled inside of large 
arrays of photoresist trenches from 4…20 m in width 
and 500 m in length, with high uniformity, repeatability 
and quality. Compared to convective self-assembly 
nanosphere lithography, geometrically confined 
nanosphere lithography allows precise patterning of 
nanoparticle arrays for use in practical sensing devices, 
while still remaining inexpensive. The typical structure of 
the surface fabricated by nanosphere lithography method 
is shown in Fig. 4 [8].

More precise methods such as electron-beam 
lithography and plasma etching offer higher resolution, 
uniformity and repeatability for microstructures array 
fabrication, but it is not economical, especially in 
comparison with nanosphere lithography.

3. Results and discussion

In general, micro- and nanostructures fabrication 
approaches can be divided into two methods: deposition 
(bottom up) and etching (top down) ones [9]. It is well 
known that the light absorption of a bulk material is 
limited by the Yablonovitch limit [10], which sets an 
upper limit to the amount of electromagnetic intensity 
that can be trapped in material. The standard theory of 
light trapping demonstrated that absorption enhancement 

in a medium cannot exceed a factor of 4n2/sin2, where n
is the refractive index of the active layer, and  is the 
angle of the emission cone in the medium surrounding 
the cell. Recent theoretical developments showed that 
this limit can be overcome by using nanophotonic 
strategies, which can improve light trapping and thus, 
light absorption by order of magnitudes. Yu et al. [11] 
proposed a statistical temporal mode-coupled theory to 
describe the trapping enhancement in periodic photonic 
nanostructures. This theory reveals that the conventional 
limit can be substantially surpassed when optical modes 
exhibit deep-subwavelength-scale field confinement, 
opening new avenues for highly efficient next-
generation sensing systems.

In the paper [12], the authors proposed a new 
approach, in which the waveguide nature of thin films is 
combined with a random distribution of nanoscale holes 
to improve the light coupling to the Si slab. Light 
impinging from the vertical direction couples to the 
modes generated by the 2D multiple scattering. The 
absorption is independent from polarisation and is 
broadband. The structures were simulated using the 3D 
finite-difference time-domain method. The dispersion of 
the samples was modeled by fitting tabulated data with 
Drude-Lorentz expression. Results from calculations and 
measurements on the absorption of the Si bare slab and 
the Si perforated (ion beam lithography and plasma 
etching) slab are compared. A clear enhancement of 
absorption is obtained for both polarizations and at all 
wavelengths. The measurements and simulations are 
quantitatively in very good agreement. The intensity of 
the trapped light in the random structures is clearly 
enhanced as compared with that in the bare slab. These 
samples can be applied in solar cell technology for 
increasing energy transfer coefficient.

In the papers [5, 13-14], the authors compared 
absorption of deposited thin Ni, Mo and Pd films on 
lithium niobate with the same samples implanted by Ar+

ions. As shown in AFM and SEM images, the surface of 
implanted samples was covered by blisters. Absorption 
of implanted Pd film on lithium niobate was enhanced 
up to 80% in the wide spectral range ( = 1…15 m). 
These systems are used in pyroelectric photodetectors 
and power meters, so enhancing absorption will benefit 
sensitivity, but atom intermixing process at the interface 
film-substrate increases adhesion of the film to substrate 
and, respectively, damage threshold. 

In first and second cases, we can observe 
enhancement of absorption in different materials by 
modification of their surface structure. The fabricated by 
deposition or etching micro- or nanostructures may 
outperform existing results with the light absorption 
exceeding 80%. 

4. Conclusions

The used methods such as ion implantation, laser 
irradiation and nanosphere lithography for creation 
special surface structure of the absorbing films 
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increasing their absorption and decreasing reflection 
have been described. The Mie theory and statistical 
temporal mode-coupled theory have been used to 
describe mechanism and to find key parameters (shapes, 
dimensions and ordering of surface micro- and 
nanostructures) for efficient enhancing absorption. The 
overviewed methods of surface structure modification 
have variety of applications including photovoltaics, 
infrared sensing, optoelectronics etc.
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1. Introduction 

Deposition of thin absorbing films plays a basic role for transformation of light energy to its other kinds for sensing elements of photodetectors, sensors, solar cells and other systems. Optical properties of thin films should satisfy requirements on transmission and absorption bands, reflection and refraction coefficients and adhesion of these films to the substrate. So, selection of the absorbing material, method of its deposition and further processing are the basic steps of sample preparation.


To enhance absorption of thin films, the critical requirement is the relation of dimensions of the structures a with the light wavelength (. Thus, at a << ( the polar scattering diagrams are symmetrical. So, the intensity of light scattering is maximal and is the same in direction of forward and back and is minimal in the symmetry plane. Increasing а, the intensity of forward scattering is higher than that for back scattering (Mie effect) [1]. At a >> (, the highest intensity of light scattering will be for the back one. It can be simply explained as shown in Fig. 1 and table [2]. So, for increasing absorption of thin films or surfaces of the samples, the dimensions of structures should be of the order of the wavelength. To fulfill this requirement, it is necessary to make appropriate processing of the surface. 


It can be used one of the proposed methods for surface modification: ion implantation, laser irradiation and nanosphere lithography, etc. But the most effective method for different individual case should be specific, and its applicability should be analyzed.


2. Overview of methods


Ion implantation causes disposition of atoms in solid from their stationary locations. These atoms having enough kinetic energy became secondary bombardment particles and cause appropriate dispositions of other atoms in the lattice. As a result, a cascade of disposition of atoms can be formed. On its free path, the implanted ion may cause a lot of such cascades in the volume surrounding its track [3]. These avalanche processes cause radiation defects in the lattice and lead to appearance of an amorphous area and destroy the long-range order in crystals [4]. In separate cases, ion implantation can lead even to phase transformations, which depends on material composition, energy and dose of implanted ions. Mechanism of blisters formation consists in deformation of subsurface layers of film under the pressure of inert gases that was implanted as ions into the sample. The coefficient of surface tension of the materials is decreased when necessary doses of implantation are reached, which increases the probability of blisters formation on the surface of sample. By selecting material composition, type, energy and dose of implantation as well as the temperature of materials and that of further thermal annealing, it is possible to reach large-scale blisters formation (Fig. 2) that will effectively increase optical absorption of the sample for various applications [5]. 
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Fig. 1. (a) Light specularly reﬂecting from a ﬂat surface. (b) Multiple reﬂections from protruding structures enhance coupling into the material, and refraction causes the light to prorogate at oblique angles, increasing the optical path length [2].
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Fig. 2. Typical microrelief of thin Ni films on lithium niobate implanted by Ar+ ions with the energies of 100 keV [5].


Table. Multiple length scales over which reﬂectivity and absorption is determined by surface features.


		Feature size

		Inﬂuence on reﬂectivity



		a >> (

		Light trapping due to multiple reﬂections enhances coupling into the material. Light refracted at oblique angles increases the effective optical path length



		a ( (

		Small features can successively scatter light, increasing the effective optical path length and enhancing absorption



		a << (

		Subwavelength structures (SWS) can reduce reﬂections through the moth-eye effect





Laser irradiation along with ion implantation is one of new effective methods to modify the surface structure. One can use a pulsed power or CW laser with the system of scanning laser beam on the surface of the sample. Similar to the previous case, interaction of laser irradiation with solids is accompanied by effects of atom intermixing, hardening and generation of defects. But the dominant mechanism of intermixing by laser irradiation is diffusion in liquid phase, which takes the time when the surface is in the melted state. This is also related to systems metal-semiconductor. The diffusion in liquid phase takes time 105 less than that in the solid phase [6]. According to calculations, the radiation energy of applied laser melts solid to the maximal depth in its case. Then, with transferring the heat from the surface melt to the substrate bulk, the front of melting moves in the same direction. Estimation of the time when the sub-surface layer is kept in the state of the melt enables to determine the rate of hardening of the solid in the terms of temperature changes: 109…1010 K/s, sometimes up to 1014 K/s when using the UV lasers with shorter pulses. The typical structure of the surface as an example of Si processed by 800 nm 100 fs pulsed laser (10 kJ/m2) is shown in Fig. 3 [2]. Application of laser pulses to modify properties of sub-surface layers and structure of material surfaces can be successfully used to create structured surfaces as well as to improve absorbing properties of the samples.
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Fig. 3. SEM images of the surface microstructuring of Si(100) by 500 laser pulses of the 200-mm diameter, nearly Gaussian beam (100 fs, 800 nm, 10 kJ/m2) (a) processed in vacuum and (b,c) in the 500-Torr atmosphere of SF6. Images viewed at the angle 45º from the surface normal [2]. 
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Fig. 4. Illustration of the nanosphere lithography fabrication method. (a) Render of the hexahonal close-packed monolayer that is used as a deposition mask, and (b) render of the nanoparticle array that results after metal deposition and removal of the microsphere mask [7, 8].


Nanosphere lithography is the newest method to fabricate microstructures. Despite primary application of this method with localized surface plasmon resonance (LSPR), it can be successfully applied for coating surfaces with ordered micro- and nanostructures of required geometry for various applications. Nanosphere lithography has been used to produce inexpensive nanoparticle arrays, through the use of monolayers of self-assembled microspheres as a deposition mask. However, lack of control over the location and size of the arrays, as well as poor uniformity over large areas, limit its use to research purposes. There are two prospective methods for large-area fabrication of nanoparticle arrays: convective self-assembly nanosphere lithography and geometrically confined nanosphere lithography. In geometrically confined nanosphere lithography method, microsphere assembly is confined to geometric patterns defined in photoresist. It was shown in the paper [7, 8] that 400-nm polystyrene microspheres can be assembled inside of large arrays of photoresist trenches from 4…20 (m in width and 500 (m in length, with high uniformity, repeatability and quality. Compared to convective self-assembly nanosphere lithography, geometrically confined nanosphere lithography allows precise patterning of nanoparticle arrays for use in practical sensing devices, while still remaining inexpensive. The typical structure of the surface fabricated by nanosphere lithography method is shown in Fig. 4 [8].


More precise methods such as electron-beam lithography and plasma etching offer higher resolution, uniformity and repeatability for microstructures array fabrication, but it is not economical, especially in comparison with nanosphere lithography.


3. Results and discussion


In general, micro- and nanostructures fabrication approaches can be divided into two methods: deposition (bottom up) and etching (top down) ones [9]. It is well known that the light absorption of a bulk material is limited by the Yablonovitch limit [10], which sets an upper limit to the amount of electromagnetic intensity that can be trapped in material. The standard theory of light trapping demonstrated that absorption enhancement in a medium cannot exceed a factor of 4n2/sin2(, where n is the refractive index of the active layer, and ( is the angle of the emission cone in the medium surrounding the cell. Recent theoretical developments showed that this limit can be overcome by using nanophotonic strategies, which can improve light trapping and thus, light absorption by order of magnitudes. Yu et al. [11] proposed a statistical temporal mode-coupled theory to describe the trapping enhancement in periodic photonic nanostructures. This theory reveals that the conventional limit can be substantially surpassed when optical modes exhibit deep-subwavelength-scale field confinement, opening new avenues for highly efficient next-generation sensing systems.


In the paper [12], the authors proposed a new approach, in which the waveguide nature of thin films is combined with a random distribution of nanoscale holes to improve the light coupling to the Si slab. Light impinging from the vertical direction couples to the modes generated by the 2D multiple scattering. The absorption is independent from polarisation and is broadband. The structures were simulated using the 3D finite-difference time-domain method. The dispersion of the samples was modeled by fitting tabulated data with Drude-Lorentz expression. Results from calculations and measurements on the absorption of the Si bare slab and the Si perforated (ion beam lithography and plasma etching) slab are compared. A clear enhancement of absorption is obtained for both polarizations and at all wavelengths. The measurements and simulations are quantitatively in very good agreement. The intensity of the trapped light in the random structures is clearly enhanced as compared with that in the bare slab. These samples can be applied in solar cell technology for increasing energy transfer coefficient.


In the papers [5, 13-14], the authors compared absorption of deposited thin Ni, Mo and Pd films on lithium niobate with the same samples implanted by Ar+ ions. As shown in AFM and SEM images, the surface of implanted samples was covered by blisters. Absorption of implanted Pd film on lithium niobate was enhanced up to 80% in the wide spectral range (( = 1…15 (m). These systems are used in pyroelectric photodetectors and power meters, so enhancing absorption will benefit sensitivity, but atom intermixing process at the interface film-substrate increases adhesion of the film to substrate and, respectively, damage threshold. 


In first and second cases, we can observe enhancement of absorption in different materials by modification of their surface structure. The fabricated by deposition or etching micro- or nanostructures may outperform existing results with the light absorption exceeding 80%. 


4. Conclusions


The used methods such as ion implantation, laser irradiation and nanosphere lithography for creation special surface structure of the absorbing films increasing their absorption and decreasing reflection have been described. The Mie theory and statistical temporal mode-coupled theory have been used to describe mechanism and to find key parameters (shapes, dimensions and ordering of surface micro- and nanostructures) for efficient enhancing absorption. The overviewed methods of surface structure modification have variety of applications including photovoltaics, infrared sensing, optoelectronics etc.
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