Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 2. P. 128-133.
https://doi.org/10.15407/spqeo18.02.128


                                                                 

References

1. Zh.I. Alferov, The semiconductor revolution in the 20th century. Russ. Chem. Rev. 82(7), 587 (2013).
https://doi.org/10.1070/RC2013v082n07ABEH004403
 
2. Ye.L. Ivchenko, Optics of quantum wells and superlattice / In: Optics of nanostructures. Ed. by. A.F. Fedorov. Nedra, St-Petersburg, 2005.
 
3. V. Shchukin, N.N. Ledentsov, D. Bimberg, Epitaxy of Nanostructures. Springer, Berlin, 2003.
 
4. M.J. Manfra, Molecular beam epitaxy of ultra-high quality AlGaAs/GaAs heterostructures: Enabling physics in low-dimensional electronic systems. arXiv: 1309.2717 [cond-mat.mes-hall] (2013).
 
5. J.P. Donnelly, Two-dimensional surface-emitting arrays of GaAs/AlGaAs diode lasers. The Lincoln Lab. Journ. 3(3), p. 361 (1999).
 
6. C. Sirtori, P. Kruck, S. Barbieri et al., GaAs/AlxGa1-xAs quantum cascade lasers. Appl. Phys. Lett. 73(24), p. 3486 (1998).
https://doi.org/10.1063/1.122812
 
7. W. Lu, N. Li; S.C. Shen et al., Modeling on GaAs/AlGaAs quantum well infrared photodetector. 25-th International Conference on Infrared and Millimeter Waves (Sept. 12-15, 2000, Beijing, China), p. 37-39 (2000).
https://doi.org/10.1109/icimw.2000.892928
 
8. M. Sorel, G. Giuliani, A. Scire et al., Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model. IEEE Journal of Quantum Electronics 39(10), p. 1187 (2003).
https://doi.org/10.1109/JQE.2003.817585
 
9. S. Krukovs'kyi, B. Koman, N. Strukhlyak, Hetero-photoelements p-AlGaAs/n-GaAs of enhanced efficiency with the layer GaAs fully doped with Al and Yb. Visnyk Lvivs'kogo universitetu: Seriya fizychna, 88, p. 276 (2005), in Ukrainian.
 
10. T. Sarkr, S.K. Mazumder, Epitaxial design of a direct optically controlled GaAs/AlGaAs-based heterostructure lateral superjunction power device for fast repetitive switching. IEEE Transition Electron Devices 54(3), p. 589 (2007).
https://doi.org/10.1109/TED.2006.890231
 
11. A. Weerasekara, S. Matsik, M. Rinzan et al., n-type GaAs/AlGaAs heterostructure detector with a 3.2 THz threshold frequency. Opt. Lett. 32(10), p. 1335 (2007).
https://doi.org/10.1364/OL.32.001335
 
12. D.A.B. Miller, Optical physics in quantum wells / In: Quantum Dynamics of Simple Systems. Ed. G.-L. Oppo, S.M. Barnett, E. Riis, M. Wilkinson. Institute of Physics, London, 1996.
 
13. S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller, Theory of transient excitonic optical non-linearities in semiconductor quantum-well structures. Phys. Rev. B 32(10), p. 6601 (1985).
https://doi.org/10.1103/PhysRevB.32.6601
 
14. Z.Y. Xu, S.R. Jin, C.P. Luo, J.Z. Xu, Well width dependence of the exciton lifetime in narrow GaAs/AlGaAs quantum wells. Solid State Communs. 87(9), p. 797 (1993).
https://doi.org/10.1016/0038-1098(93)90416-K
 
15. S.I. Gubarev, O.V. Volkov, V.A. Koval'skii, I.V. Kukushkin, Effect of screening by two-dimensional charge carriers on the binding energy of Excitonic states in GaAs/AlGaAs quantum wells. JETP Lett. 76(9), p. 575 (2002).
https://doi.org/10.1134/1.1538293
 
16. V.I. Boichuk, V.A. Borusevych, Influence of the parameter of the electron-phonjn interaction of the energy spectrum of polarons in quasi-two-dimensional strucrures. Ukr. J. Phys. 51(2), p. 166 (2006).
 
17. C. Rössler, T. Feil, P. Mensch et al., Gating of high-mobility two-dimensional electron gases in GaAs/AlGaAs heterostructures. New Journal of Physics, 12(4), 043007 (2010).
https://doi.org/10.1088/1367-2630/12/4/043007
 
18. J. Diaz-Reyes, M. Galván-Arellano, R. Pe-a-Sierra, Raman scattering and electrical characterization of AlGaAs/GaAs rectangular and triangular barriers grown by MOCVD. Superficies y Vacío, 23(1), p. 13 (2010).
 
19. S.V. Poltavtsev, B.V. Stroganov, Experimental investigation of the oscillator force for the exciton transition in single quantum wells GaAs. Fizika tverdogo tela, 52(9), p. 1769 (2010), in Russian.
 
20. S. Zybell, H. Schneider, S. Winnerl et al., Photoluminescence dynamics in GaAs/AlGaAs quantum wells under pulsed intersubband excitation. Appl. Phys. Lett. 99(4), 041103 (2011).
https://doi.org/10.1063/1.3615298
 
21. S. Pfalz, R. Winkler, N. Ubbelhde, et al., Electron spin orientation under in-plane optical excitation in GaAs quantum wells. arXiv:1202.2040vl [cond-mat.mes-hall] (2012).
 
22. P.V. Petrov, Yu.L. Ivanov, Experimental observation of giant Zeeman splitting the level of light hole in the quantum well GaAs/AlGaAs. Fizika i tekhnika poluprovodnikov, 47(4), p. 433 (2013), in Russian.
 
23. M.V. Tkach, Quasiparticles in Nanoheterosystems. Quantum Dots and Wires. Chernivtsy Univ. Press, 2003.
 
24. V.M. Kramar, M.V. Tkach, Exciton-phonon interaction and exciton energy in semiconductor nanofilms. Ukr. J. Phys. 54(10), p.1027 (2009).
 
25. D.V. Kondryuk, V.M. Kramar, Temperature dependences of the electron energy in AlxGa1-xAs/ GaAs/ AlxGa1-xAs nanofilms of different thickness and composition of the barrier material. J. Nano- and Electronic Phys. 6(4), 04032 (2014).
 
26. A.V. Derevyanchuk, O.V. Pugantseva, V.M. Kra-mar, Temperature changes in the shape inherent to the band of exciton absorption in nanofilm of lay-ered semiconductor. SPQEO 17(2), p. 188 (2014).
 
27. M.V. Tkach, V.M. Kramar, Electron-phonon interaction and the mechanisms of electron spectrum renormalization in a flat nanofilm. Ukr. J. Phys. 53(8), p. 810 (2008).
 
28. S. Adachi, GaAs, AlAs and AlxGa1-xAs material parameters for use in research and device applications. J. Appl. Phys. 58(3), p. R1 (1985).
https://doi.org/10.1063/1.336070
 
29. M.V. Tkach, V.M. Kramar, Thermal genesis of the bottom of main electron's energy band in a flat nanofilm. Ukr. J. Phys. 53(11), p. 1110 (2008).
 
30. F.T. Vasko, J.P. Sun, G.I. Haddad, V.V. Mitin, Inhomogeneous broadening of intersubband transitions due to nonscreening roughness of heterointerfaces. J. Appl. Phys. 87(7), p. 3582 (2000).
https://doi.org/10.1063/1.372386
 
31. S. Schmidt, J. Kaiser, A. Seilmeier, Inhomogeneous broadening of intersubband absorption bands of quantum well structures investigated by hole burning. Physica E, 7, p. 179 (2000).
https://doi.org/10.1016/S1386-9477(99)00300-8
 
32. G.N. Aliyev, N.V. Lukyanova, R.P. Seisyan, Thickness dependence of exciton absorption in pure GaAs crystals in the "pre-quantum" limit. Fizika tverdogo tela, 40(5), p. 869 (1998), in Russian.
 
33. D.S. Chemla, D.A.B. Miller, P.W. Smith et al., Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures. IEEE Journal of Quantum Electronics, 20(3), p. 265 (1986).
https://doi.org/10.1109/JQE.1984.1072393