Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 2. P. 158-163.
References 1. M.H. Smith, P. Burke, A. Lompado, E. Tanner, L.W. Hillman, Mueller matrix imaging polarimetry in dermatology. Proc. SPIE, 3991, p. 210-216 (2000).https://doi.org/10.1117/12.384904 2. M.H. Smith, Interpreting Mueller matrix images of tissues. Proc. SPIE, 4257, p. 82-89 (2001). https://doi.org/10.1117/12.434690 3. Yu.A. Ushenko, A.P. Peresunko, and Bozan Adel Baku, A new method of Mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma. Adv. Opt. Technol. 2010, 952423 (2010). 4. T.T. Tower, R.T. Tranquillo, Alignment maps of tissues: I. Microscopic elliptical polarimetry. Biophys. J. 81, p. 2954-2963 (2001). https://doi.org/10.1016/S0006-3495(01)75935-8 5. J.M. Bueno, J. Jaronski, Spatially resolved polarization properties for in vitro corneas. Ophthal. Physiol. Opt. 21, p. 384-392 (2001). https://doi.org/10.1046/j.1475-1313.2001.00601.x 6. J.M. Bueno, F. Vargas-Martin, Measurements of the corneal birefringence with a liquid-crystal imaging polariscope. Appl. Opt. 41, p. 116-124 (2002). https://doi.org/10.1364/AO.41.000116 7. J.M. Bueno, M.C.W. Campbell, Polarization properties of the in vitro old human crystalline lens. Ophthal. Physiol. Opt. 23, p. 109-118 (2003). https://doi.org/10.1046/j.1475-1313.2003.00095.x 8. T.T. Tower, R.T. Tranquillo, Alignment maps of tissues: II. Fast harmonic analysis for imaging. Biophys. J. 81, p. 2964-2971 (2001). https://doi.org/10.1016/S0006-3495(01)75936-X 9. M. Shribak and R. Oldenbourg, Techniques for fast and sensitive measurements of two-dimensional birefringence distributions. Appl. Opt. 42, p. 3009-3017 (2003). https://doi.org/10.1364/AO.42.003009 10. S.N. Savenkov, V.V. Marienko, E.A. Oberemok, O.I. Sydoruk, Generalized matrix equivalence theorem for polarization theory. Phys. Rev. E, 74, p. 605-607 (2006). https://doi.org/10.1103/PhysRevE.74.056607 11. A.G. Ushenko and V.P. Pishak, Laser polarimetry of biological tissue: Principles and applications, in: Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, 1, p. 93-138, ed. by V.V. Tuchin. Kluwer Academic Publishers, 2004. 12. Yu.A. Ushenko, Yu.Ya. Tomka, A.V. Dubolazov, Complex degree of mutual anisotropy of extracellular matrix of biological tissues. Optika i Spektroskopiya, 110, p. 814-819 (2011), in Russian. https://doi.org/10.1134/s0030400x11050195 13. Yu.A. Ushenko, Investigation of formation and interrelations of polarization singular structure and Mueller-matrix images of biological tissues and diagnostics of their cancer changes. J. Biomed. Opt. 16, 066006 (2011). https://doi.org/10.1117/1.3585689 14. Yu.A. Ushenko, I.Z. Misevich, O.Yu. Telenha, Yu.Ya. Tomka, A.O. Karachevtsev, Polarization-singular structure of laser images of stratified phase-inhomogeneous layers for the diagnostics and classification of their optical properties. Optical Memory and Neural Networks (Information Optics), 20, p. 59-70 (2011). https://doi.org/10.3103/S1060992X11010048 15. Yu.A. Ushenko, Yu.Ya. Tomka, A.V. Dubolazov, O.Yu. Telenha, Diagnostics of optical anisotropy changes in biological tissues using Müller matrix. Quantum Electronics, 41(3), p. 273-277 (2011). https://doi.org/10.1070/QE2011v041n03ABEH014210 16. Yu.A. Ushenko, A.V. Dubolazov, A.O. Karachevtsev, Statistical structure of skin derma Mueller matrix images in the process of cancer changes. Optical Memory and Neural Networks (Information Optics), 20, p. 145-154 (2011). https://doi.org/10.3103/S1060992X1102010X 17. O.V. Angelsky, Yu.A. Ushenko, A.V. Dubolazov, O.Yu. Telenha, The interconnection between the coordinate distribution of Mueller-matrixes images characteristic values of biological liquid crystals net and the pathological changes of human tissues. Adv. Opt. Technol. 2010, Article ID 130659, 10 pages (2010). 18. Yu.A. Ushenko, Yu.Ya. Tomka, A.V. Dubolazov, V.A. Balanetskaya, V.P. Unguryan, N.I. Zabolotna, B.P. Oleinichenko, Mueller-matrix diagnostics of optical properties inherent to polycrystalline networks of human blood plasma. Semiconductor Physics, Quantum Electronics & Optoelectronics, 14(1), p. 98-105 (2011). https://doi.org/10.15407/spqeo14.01.098 19. Yu.A. Ushenko, A.V. Dubolazov, V.A. Balanetskaya, A.O. Karachevtsev, V.A. Ushenko, Wavelet-analysis of polarization maps of human blood plasma. Optika i Spektroskopiya, 113(3), p. 332-343 (2012), in Russian. https://doi.org/10.1134/s0030400x12070260 20. O.V. Angelsky, P.V. Polyanskii, C.V. Felde, The emerging field of correlation optics. Optics and Photonics News, 23(4), p. 25-29 (2012). https://doi.org/10.1364/OPN.23.4.000025 21. O.V. Angelsky, A.Ya. Bekshaev, P.P. Maksimyak, A.P. Maksimyak, S.G. Hanson, C.Yu. Zenkova, Self-diffraction of continuous laser radiation in a disperse medium with absorbing particles. Opt. Exp. 21(7), p. 8922-8938 (2013). https://doi.org/10.1364/OE.21.008922 22. O.V. Angelsky, G.V. Demianovsky, A.G. Ushenko, D.N. Burkovets, Y.A. Ushenko, Wavelet analysis of two-dimensional birefringence images of architectonics in biotissues for diagnosing pathological changes. J. Biomed. Opt. 9(4), p. 679-690 (2004). https://doi.org/10.1117/1.1755720 23. Angel'skiǐ, A.G. Ushenko, S.B. Ermolenko, D.N. Burkovets, Yu.A. Ushenko, O.V. Pishak, Polarization-based visualization of multifractal structures for the diagnostics of pathological changes in biological tissues. Optika i Spektroskopiya, 89(5), p. 799-804 (2000), in Russian. 24. Yu.A. Ushenko, Yu.Ya. Tomka, A.V. Dubolazov, Laser diagnostics of anisotropy in birefringent networks of biological tissues in different physiological conditions. Quantum Electronics, 41(2), p. 170-175 (2011). https://doi.org/10.1070/QE2011v041n02ABEH014215 25. Yu.O. Ushenko, Yu.Ya. Tomka, O.V. Dubolazov, V.O. Balanets'ka, A.V. Karachevtsev, A.P. Angelsky, Wavelet-analysis for laser images of blood plasma. AECE – Adv. in Electr. and Comput. Eng. 11(2), (2011). https://doi.org/10.4316/aece.2011.02009 26. V.T. Bachinsky, Yu.O. Ushenko, Yu.Ya. Tomka, O.V. Dubolazov, V.O. Balanets'ka, A.V. Karachevtsev, Wavelet analysis for polarization maps of networks formed by liquid biological crystals in blood plasma: statistical and fractal approaches. Semiconductor Physics, Quantum Electronics & Optoelectronics, 13(2), p. 189-201 (2010). 27. Yu.O. Ushenko, O.V. Dubolazov, A.O. Karachevtsev, M.P. Gorsky, Yu.F. Marchuk, Wavelet analysis of Fourier polarized images of the human bile. Appl. Opt. 51, p. C133-C139 (2012). https://doi.org/10.1364/AO.51.00C133 |