Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 2. P. 164-169.
https://doi.org/10.15407/spqeo18.02.164


                                                                 

References

1.    O.V. Angelsky, V.P. Pishak, A.G. Ushenko, Yu.A. Ushenko, Statistical and fractal structure of biological tissue Mueller matrix images, in: Optical Correlation Techniques and Applications, ed. by O. Angelsky. SPIE Press, Bellingham, 2007, p. 213-266.
https://doi.org/10.1117/3.714999.ch4
 
2.    O.V. Angelsky, A.G. Ushenko, Yu.A. Ushenko, V.P. Pishak, A.P. Peresunko, Statistical, Correlation and Topological Approaches in Diagnostics of the Structure and Physiological State of Birefringent Biological Tissues. Handbook of Photonics for Biomedical Science, ed. by V.V. Tuchin. CRC Press, Taylor&Francis group, Boca Raton, London, New York, 2010, p. 283-322.
 
3.    Y.A. Ushenko, T.M. Boychuk, V.T. Bachynsky, O.P. Mincer, Diagnostics of Structure and Physiological State of Birefringent Biological Tissues: Statistical, Correlation and Topological Approaches. Handbook of Coherent-Domain Optical Methods. Springer Science+Business Media New York, 2013, p. 107-148.
 
4.    J.M. Bueno, J. Jaronski, Spatially resolved polarization properties for in vitro corneas. Ophthal. Physiol. Opt. 21(5), p. 384-392 (2001).
https://doi.org/10.1046/j.1475-1313.2001.00601.x
 
5.    M. Shribak, R. Oldenbourg, Techniques for fast and sensitive measurements of two-dimensional birefringence distributions. Appl. Opt. 42, p. 3009-3017 (2003).
https://doi.org/10.1364/AO.42.003009
 
6.    M.H. Smith, Interpreting Mueller matrix images of tissues. Proc. SPIE, 4257, p. 82-89 (2001).
https://doi.org/10.1117/12.434690
 
7.    E.I. Olar, A.G. Ushenko, Y.A. Ushenko, Polarization correlation measurements of the phase tomograms of optically anisotropic biofractals. LASER PHYSICS-LAWRENCE, 14(8), p. 1115-1121 (2004).
 
8.    O.V. Angelsky, G.V. Demianovsky, A.G. Ushenko, D.N. Burkovets, Y.A. Ushenko, Wavelet analysis of two-dimensional birefringence images of architectonics in biotissues for diagnosing pathological changes. J. Biomed. Opt. 9(4), p. 679-690 (2004).
https://doi.org/10.1117/1.1755720
 
9.    O.V. Angel'skiǐ, A.G. Ushenko, S.B. Ermolenko, D.N. Burkovets, Yu.A. Ushenko, O.V. Pishak, Polarization-based visualization of multifractal structures for the diagnostics of pathological changes in biological tissues. Optika i Spektroskopiya, 89(5), p. 799-804 (2000), in Russian.
https://doi.org/10.1134/1.1328141
 
10.    R. Jóźwicki, K. Patorski, O.V. Angelsky, A.G. Ushenko, D.N. Burkovets, Automatic polarimetric system for early medical diagnosis by biotissue testing. Optica Applicata, 32(4), p. 603-612 (2005).
 
11.    E.I. Olar, A.G. Ushenko, Y.A. Ushenko, Correlation microstructure of the Jones matrices for multifractal networks of biotissues. LASER PHYSICS-LAWRENCE, 14(7), p. 1012-1018 (2004).
 
12.    S. Yermolenko, A. Ushenko, P. Ivashko, F. Gou-dail, I. Gruia, C. Gavrilă, Spectropolarimetry of cancer change of biotissues. SPIE Proc. 7388, Correlation Optics 2009, 73881D-73881D-7 (2009).
 
13.    J.W. Goodman, Statistical properties of laser speckle patters. In: Laser Speckle and Related Phenomena. Ed. J.C. Dainty. Berlin, Springer-Verlag, p. 9-75, 1975.
 
14.    O.V. Angelsky, P.V. Polyanskii, C.V. Felde, The emerging field of correlation optics. Optics and Photonics News, 23(4), p. 25-29 (2012).
https://doi.org/10.1364/OPN.23.4.000025
 
15.    O.V. Angelsky, A.Ya. Bekshaev, P.P. Maksimyak, A.P. Maksimyak, S.G. Hanson, C.Yu. Zenkova, Self-diffraction of continuous laser radiation in a disperse medium with absorbing particles. Opt. Exp. 21(7), p. 8922-8938 (2013).
https://doi.org/10.1364/OE.21.008922
 
16.    Yu.A. Ushenko, Yu.Ya. Tomka, A.V. Dubolazov, Laser diagnostics of anisotropy in birefringent networks of biological tissues in different physiological conditions. Quantum Electronics, 41(2), p. 170-175 (2011).
https://doi.org/10.1070/QE2011v041n02ABEH014215
 
17.    Yu.A. Ushenko, Yu.Ya. Tomka, A.V. Dubolazov, O.Yu. Telenha, Diagnostics of optical anisotropy changes in biological tissues using Müller matrix. Quantum Electronics, 41(3), p. 273-277 (2011).
https://doi.org/10.1070/QE2011v041n03ABEH014210
 
18.    O.V. Angelsky, Yu.A. Ushenko, A.V. Dubolazov, O.Yu. Telenha, The interconnection between the coordinate distribution of Mueller-matrixes images characteristic values of biological liquid crystals net and the pathological changes of human tissues. Adv. Opt. Technol. 2010, Article ID 130659, 10 pages (2010).
 
19.    Yu.O. Ushenko, Yu.Ya. Tomka, O.V. Dubolazov, V.O. Balanets'ka, A.V. Karachevtsev, A.P. Angelsky, Wavelet-analysis for laser images of blood plasma. AECE – Adv. in Electr. and Comput. Eng. 11(2), (2011).
https://doi.org/10.4316/aece.2011.02009
 
20.    V.T. Bachinsky, Yu.O. Ushenko, Yu.Ya. Tomka, O.V. Dubolazov, V.O. Balanets'ka, A.V. Karachevtsev, Wavelet analysis for polarization maps of networks formed by liquid biological crystals in blood plasma: statistical and fractal approaches. Semiconductor Physics, Quantum Electronics & Optoelectronics, 13(2), p. 189-201 (2010).
 
21.    Yu.A. Ushenko, Yu.Ya. Tomka, A.V. Dubolazov, V.A. Balanetskaya, V.P. Unguryan, N.I. Zabolotna, B.P. Oleinichenko, Mueller-matrix diagnostics of optical properties inherent to polycrystalline networks of human blood plasma. Semiconductor Physics, Quantum Electronics & Optoelectronics, 14(1), p. 98-105 (2011).
https://doi.org/10.15407/spqeo14.01.098
 
22.    Yu.O. Ushenko, O.V. Dubolazov, A.O. Karachevtsev, M.P. Gorsky, Yu.F. Marchuk, Wavelet analysis of Fourier polarized images of the human bile. Appl. Opt. 51, p. C133-C139 (2012).
https://doi.org/10.1364/AO.51.00C133