Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 2. P. 181-187.
References 1. T.T. Tower, R.T. Tranquillo, Alignment maps of tissues: I. Microscopic elliptical polarimetry. Biophys. J. 81, p. 2954-2963 (2001).https://doi.org/10.1016/S0006-3495(01)75935-8 2. M.H. Smith, P. Burke, A. Lompado, E. Tanner, L.W. Hillman, Mueller matrix imaging polarimetry in dermatology. Proc. SPIE, 3991, p. 210-216 (2000). https://doi.org/10.1117/12.384904 3. M. Shribak, R. Oldenbourg, Techniques for fast and sensitive measurements of two-dimensional birefringence distributions. Appl. Opt. 42, p. 3009-3017 (2003). https://doi.org/10.1364/AO.42.003009 4. M.H Smith, Interpreting Mueller matrix images of tissues. Proc. SPIE, 4257, p. 82-89 (2001). https://doi.org/10.1117/12.434690 5. X. Wang, L.V. Wang, Propagation of polarized light in birefringent turbid media: A Monte Carlo study. J. Biomed. Opt. 7, p. 279-290 (2002). https://doi.org/10.1117/1.1483315 6. O.V. Angelsky, A.Ya. Bekshaev, A.Ya. Maksimyak, P.P. Maksimyak, I.I. Mokhun, S.G. Hanson, C.Yu. Zenkova, A.V. Tyurin, Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow. Opt. Exp. 20, p. 11351-11356 (2012). https://doi.org/10.1364/OE.20.011351 7. A.Ya. Bekshaev, O.V. Angelsky, S.G. Hanson, C.Yu. Zenkova, Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows. Phys. Rev. A, 86, 023847 (2012). https://doi.org/10.1103/PhysRevA.86.023847 8. O.V. Angelsky, P.P. Maksimyak, T.O. Perun, Dimensionality in optical fields and signals. Appl. Opt. 32, p. 6066-6071 (1993). https://doi.org/10.1364/AO.32.006066 9. O.V. Angelsky, Y.A. Ushenko, The degree of mutual anisotropy of biological liquid crystals net during the diagnostics of human tissues birefringence. Adv. Opt. Technol. 2010, 321275 (2010). https://doi.org/10.1155/2010/321275 10. O.V. Angelsky, A.Ya. Bekshaev, P.P. Maksimyak, A.P. Maksimyak, S.G. Hanson, C.Yu. Zenkova, Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams. Opt. Exp. 20(4), p. 3563-3571 (2012). https://doi.org/10.1364/OE.20.003563 11. M.P. Bard, A. Amelink, M. Skurichina et al., Optical spectroscopy for the classification of malignant lesions of the bronchial tree. Chest. 129, p. 995-1001 (2006). https://doi.org/10.1378/chest.129.4.995 12. J.F. Beamis A. Ernst, P. Mathur, R. Yung, M. Simoff, A multi-center study comparing auto-fluorescence bronchoscopy to white light broncho-scopy. Lung Cancer, 41, p. S49-S50 (2003). https://doi.org/10.1016/S0169-5002(03)91822-8 13. K. Häussinger, J. Pichler, F. Stanzel, A. Markus, H. Stepp, A. Morresi-Hauff, R. Baumgartner, Auto-fluorescence bronchoscopy: the D-light system. Intervent. Bronchoscopy, 30, p. 243-252 (2000). https://doi.org/10.1159/000062107 14. F. Herth, H. Becker, Autofluorescence bronchoscopy-a comparison of two systems (LIFE and D-Light). Respiration, 70, p. 395-398 (2003). https://doi.org/10.1159/000072903 15. J. Hung, S. Lam, J.C. Leriche, B. Palcic, Auto-fluorescence of normal and malignant bronchial tissue. Lasers Surg. Med. 11, p. 99-105 (1991). https://doi.org/10.1002/lsm.1900110203 16. A.V. Kamath, P.N. Chhajed, Role of bronchoscopy in early diagnosis of lung cancer. Indian J. Chest Dis. Allied Sci. 48, p. 265-269 (2006). 17. L.I. Grossweiner, A. Blum, G.C. Goyal, Advances in Experimental Medicine and Biology. Methods in Porphyrin Photosensitization, 193, p. 181-192 (1985). https://doi.org/10.1007/978-1-4613-2165-1_21 18. S.N. Savenkov, V.V. Marienko, E.A. Oberemok, O.I. Sydoruk, Generalized matrix equivalence theorem for polarization theory. Phys. Rev. E, 74, p. 605-607 (2006). https://doi.org/10.1103/PhysRevE.74.056607 19. O. Arteaga, S. Nichols, B. Kahr, Mueller matrices in fluorescence scattering. Opt. Lett. 37, p. 2835-2837 (2012). https://doi.org/10.1364/OL.37.002835 20. R. Alfano, D. Tata, J. Cordero et al., Laser induced fluorescence spectroscopy from native cancerous and normal tissue. IEEE Quantum Electron. 20, p. 1502 (1984). https://doi.org/10.1109/JQE.1984.1072322 21. A.G. Ushenko, V.P. Pishak, Laser polarimetry of biological tissue: Principles and applications, in: Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, 1, p. 93-138 (2004). 22. .O.V. Angelsky, A.G. Ushenko, Yu.A. Ushenko, V.P. Pishak, A.P. Peresunko, Statistical, correlation and topological approaches in diagnostics of the structure and physiological state of birefringent biological tissues, in: Handbook of Photonics for Biomedical Science, p. 283-322, 2010. https://doi.org/10.1201/9781439806296-c10 23. Y.A. Ushenko, T.M. Boychuk, V.T. Bachynsky, O.P. Mincer, Diagnostics of structure and physiological state of birefringent biological tissues: Statistical, correlation and topological approaches, in: Handbook of Coherent-Domain Optical Methods, p. 107-148 (2013). 24. Yu.A. Ushenko, G.B. Bodnar, G.D. Koval, Classifying optical properties of surface-and bulk-scattering biological layers with polarization singular states. J. Innov. Opt. Health Sci. 6, 1350018 (2013). https://doi.org/10.1142/S1793545813500181 25. Yu.A. Ushenko, Statistical structure of polarization-inhomogeneous images of biotissues with different morphological structures. Ukr. J. Phys. Opt. 6, p. 63-70 (2005). https://doi.org/10.3116/16091833/6/2/63/2005 26. Yu.A. Ushenko, A.P. Peresunko, B.A. Baku, A new method of Mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma. Adv. Opt. Technol. 952423 (2010). https://doi.org/10.1155/2010/952423 27. Yu.A. Ushenko, O.I. Telenga, A.P. Peresunko, O.K. Numan, New parameter for describing and analyzing the optical-anisotropic properties of biological tissues. J. Innov. Opt. Health Sci. 4, p. 463-475 (2011). https://doi.org/10.1142/S1793545811001496 28. Yu.A. Ushenko, The feasibilities of using the statistical, fractal and singular processing of hominal blood plasma phase images during the diagnostics and differentiation of mammary gland pathological states. J. Innov. Opt. Health Sci. 5, 1150001 (2012). https://doi.org/10.1142/S1793545811500015 29. R. Sroka, R. Baumgartner, A. Buser, C. Ell, D. Jocham, E. Unsoeld, Laser assisted detection of endogenous porphyrin in malignant diseases. Proc. SPIE, 1641, p. 99-105 (1991). https://doi.org/10.1117/12.59353 30. M.A. D'Hallewin, A.R. Kamuhabwa, T. Roskams, P.A. De Witte, L. Baert, Hypericin based fluorescence diagnosis of bladder carcinoma. BJU Int. 89, p. 760-763 (2002). https://doi.org/10.1046/j.1464-410X.2002.02690.x 31. M.A. D'Hallewin, L. Bezdetnaya, F. Guillemin, Fluorescence detection of bladder cancer: a review. Eur. Urol. 42, p. 417-425 (2002). https://doi.org/10.1016/S0302-2838(02)00402-5 |