Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 2. P. 193-199.
https://doi.org/10.15407/spqeo18.02.193




References

1.    S. Chandrasekhar, Liquid Crystals. Cambridge University Press, Cambridge, 1977.
 
2.    L.M. Blinov, Electro- and Magnetooptics of Liquid Crystals. Nauka, Moscow, 1978.
 
3.    S.A. Pikin, L.M. Blinov, Liquid Crystals. Nauka, Moscow, 1982.
 
4.    T.Z. Kosc, K.L. Marshall, A. Trajkovska-Petkoska et al. Progress in the development of polymer cholesteric liquid crystal flakes for display applications. Displays, 25 No. 5, p. 171-176 (2004).
https://doi.org/10.1016/j.displa.2004.09.014
 
5.    B. Das, S. Vyas, J. Joseph et al., Transmission type twisted nematic liquid crystal display for three gray-level phase-modulated holographic data storage systems. Opt. and Las. Eng. 47, N. 11, p. 1150-1159 (2009).
https://doi.org/10.1016/j.optlaseng.2009.06.011
 
6.    P. García-Martínez, M. del Mar Sánchez-López et al., Accurate color predictability based on a spectral retardance model of a twisted-nematic liquid-crystal display. Opt. Communs. 284, Iss. 10-11, p. 2441-2447 (2011).
https://doi.org/10.1016/j.optcom.2011.01.037
 
7.    A.S. Marathay, Matrix-operator description of propagation of polarized light through cholesteric liquid crystals. J. Opt. Soc. Am. 61, p. 1363-1372 (1971).
https://doi.org/10.1364/JOSA.61.001363
 
8.    R.C. Jones, A new calculus for the treatment of optical systems. I. Description and discussion of the calculus. J. Opt. Soc. Am. 31, p. 488-493 (1941).
https://doi.org/10.1364/JOSA.31.000488
 
9.    F. Perrin, Polarization of light scattering by isotropic opalescent media. J. Chem. Phys. 10, p. 415-427 (1942).
https://doi.org/10.1063/1.1723743
 
10.    R.C. Jones, A new calculus for the treatment of optical systems. VII. Properties of the N-matrices. J. Opt. Soc. Am. 38, p. 671-685 (1948).
https://doi.org/10.1364/JOSA.38.000671
 
11.    R.M.A. Azzam, Propagation of partially polarized light through anisotropic media with or without depolarization. A differential 4×4 matrix calculus. J. Opt. Soc. Am. 68, p. 1756-1767 (1979).
https://doi.org/10.1364/JOSA.68.001756
 
12.    H. Hurwitz, R.C. Jones, A new calculus for the treatment of optical systems. II. Proof of the three general equivalence theorems. J. Opt. Soc. Am. 31, p. 493-499 (1941).
https://doi.org/10.1364/JOSA.31.000493
 
13.    R.M.A. Azzam, N.M. Bashara, Simplified approach to the propagation of polarized light in anisotropic media-application to liquid crystals. J. Opt. Soc. Am. 62, p. 1252-1257 (1972).
https://doi.org/10.1364/JOSA.62.001252
 
14.    R.M.A. Azzam, N.M. Bashara, B.E. Merrill, Trajectories describing the evolution of polarized light in homogeneous anisotropic media and liquid crystals. J. Appl. Opt. 12, p. 764-771 (1973).
https://doi.org/10.1364/AO.12.000764
 
15.    X. Zhu, Q. Hong, Y. Huang, S.-T. Wu, Eigenmodes of a reflective twisted-nematic liquid-crystal cell. J. Appl. Phys. 94, No. 5, p. 2868-2973 (2003).
https://doi.org/10.1063/1.1595145
 
16.    M. Yamauch, Jones-matrix models for twisted-nematic liquid-crystal devices. J. Appl. Opt. 44, No. 21, p. 4484-4493 (2005).
https://doi.org/10.1364/AO.44.004484
 
17.    I.S. Kolomiets, S.N. Savenkov, Ye.A. Oberemok, A.S. Klimov, Studying anisotropic properties of longitudinal inhomogeneous nondepolarizing media with elliptical phase anisotropy. Semiconductor Physics, Quantum Electronics & Optoelectronics, 16, N. 4, p. 366-373 (2013).
https://doi.org/10.15407/spqeo16.04.366
 
18.    M.S. Koev, I.S. Kolomiets, S.N. Savenkov, Ye.A. Oberemok, A.S. Klimov, Propagation of privileged waves in longitudinally inhomogeneous medium with linear birefringence and dichroism. Semiconductor Physics, Quantum Electronics & Optoelectronics, 17, N. 4, p. 403-407 (2014).
https://doi.org/10.15407/spqeo17.04.403
 
19.    R.M.A. Azzam, N.M. Bashara, Elipsometry and Polarized Light. New-York, 1977.
 
20.    I.S. Kolomiets, Ye.A. Oberemok, S.N. Savenkov, Condition of orthogonality for self-polarizations for the first and second Jones equivalency theorems in the approximation of homogeneous and layered media. Metallofizika noveishiye tekhnologii, 33, special issue, p. 493-502 (2011).
 
21.    R.M.A. Azzam, Polarization orthogonalization properties of optical systems. Appl. Phys. A, 13, p. 281-285 (1977).
https://doi.org/10.1007/bf00882893
 
22.    S.N. Savenkov, Y.V. Aulin, Orthogonal properties of homogeneous anisotropy medium. Proc. SPIE, 6536, p. 65360D (2007).
https://doi.org/10.1117/12.753448