Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 2. P. 205-208.
https://doi.org/10.15407/spqeo18.02.205



References

1.    R. Basu, A. Garvey, Effects of ferroelectric nano-particles on ion transport in a liquid crystal. Appl. Phys. Lett. 105, 151905 (2014).
https://doi.org/10.1063/1.4898581
 
2.    O. Kurochkin, O. Buchnev, A. Iljin et al., A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal. J. Opt. A: Pure Appl. Opt. 11, 024003 (2009).
https://doi.org/10.1088/1464-4258/11/2/024003
 
3.    M. Kaczmarek, O. Buchnev, and I. Nandhakumar, Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response. Appl. Phys. Lett. 92, 103307 (2008).
https://doi.org/10.1063/1.2884186
 
4.    R. Basu, Soft memory in a ferroelectric nanoparticle-doped liquid crystal. Phys. Rev. E, 89, 022508 (2014).
https://doi.org/10.1103/PhysRevE.89.022508
 
5.    J.-F. Blach, S. Saitzek, C. Legrand et al., BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: Synthesis and electro-optical characterization. J. Appl. Phys. 107, 074102 (2010).
https://doi.org/10.1063/1.3369544
 
6.    S.N. Paul, R. Dhar, R. Verma et al., Change in electric and electro-optical properties of a nematic material (6CHBT) due to the dispersion of BaTiO3 nanoparticles. Mol. Cryst. Liq. Cryst. 545, p. 105-111 (2011).
https://doi.org/10.1080/15421406.2011.571961
 
7.    N. Podoliak, O. Buchnev, M. Herrington et al., Elastic constants, viscosity and response time in nematic liquid crystals doped with ferroelectric nanoparticles. RSC Adv.4, p. 46068-46074 (2014).
https://doi.org/10.1039/C4RA06248E
 
8.    L.M. Lopatina, J.V. Selinger, Maier-Saupe-type theory of ferroelectric nanoparticles in nematic liquid crystals. Phys. Rev. E, 84, 041703 (2011).
https://doi.org/10.1103/PhysRevE.84.041703
 
9.    W.F. Kuhs, R. Nitsche, K. Scheunemann, Vapour growth and lattice data of new compounds with icosahedral structure of the type Cu6PS5Hal (Hal = Cl, Br, I). Mater. Res. Bull. 11, p. 1115-1124 (1976).
https://doi.org/10.1016/0025-5408(76)90010-6
 
10.    R.B. Beeken, J.J. Garbe, N.R. Petersen, Cation mobility in the Cu6PS5X (X = Cl, Br, I) argyrodites. J. Phys. Chem. Solids, 64, p. 1261-1264 (2003).
https://doi.org/10.1016/S0022-3697(03)00086-6
 
11.    I.P. Studenyak, M. Kranjčec, Gy.Sh. Kovacs et al., Structural disordering studies in Cu6+δPS5I single crystals. Mater. Sci. & Eng. B, 97, p. 34-38 (2003).
https://doi.org/10.1016/S0921-5107(02)00392-6
 
12.    A. Gagor, A. Pietraszko, D. Kaynts, Diffusion paths formation for Cu ions in superionic Cu6PS5I single crystals studied in terms of structural phase transition. J. Solid State Chem. 178, p. 3366-3375 (2005).
https://doi.org/10.1016/j.jssc.2005.08.015
 
13.    A.J. Twarowski, A.C. Albrecht, Depletion layer in organic films: Low frequency measurements in polycrystalline tetracene. J. Chem. Phys. 20, p. 2255 (1979).
https://doi.org/10.1063/1.437729
 
14.    A.V. Koval'chuk, Low and infra-low dielectric spectroscopy liquid crystal-solid state interface. Sliding layers. Ukr. J. Phys. 41(10), p. 991-998 (1996).