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Abstract. The theory of active dynamic conductivity in the three-barrier active zone of a 

quantum cascade laser has been developed in the model of the electron effective mass 

and rectangular potential in the low signal approximation. In the preceding paper, it was 

shown that the static charge causes an increase of the lifetime of electronic quasi-

stationary states and the shift of the energy levels into the high-energy range without 

changing maximum values of the active dynamic conductivity. The dynamic charge 

causes redistribution of the partial components of the active dynamic conductivity 

without affecting the spectral parameters of electron. It has been set that the partial 

components of the dynamic conductivity caused by the passing through electron flow 

from nanostructures reduce, and the components of conductivity caused by the flow in 

the opposite direction increase, thus, the conductivity value remains constant. 
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1. Introduction  

Nowadays, development of semiconductor technology 

and physics is closely related with researches in quantum 

cascade lasers (QCL) and detectors [1-8] as well as 

physical processes in them.  

The active elements of the mentioned nanodevices 

operating in the terahertz and infrared region of 

electromagnetic field frequencies are flat resonant-

tunnelling structures (RTS), which physical and 

geometrical parameters greatly determine the properties 

of the mentioned nanodevices. So, to find out the 

conditions of nanolaser and detector optimization, it is 

important to know the essence of physical processes 

occurring at the coherent electron transport through the 

multilayer RTS. The theory of the electron transport 

through the three-barrier RTS with an applied permanent 

longitudinal electric field based on the founded self-

consistent solution of the full Schrödinger equation and 

Poisson equation has been developed in this paper.  

Taking as an example a three-barrier RTS as an 

active zone of the experimentally realized QCL with  

In1–xGaxAs wells and In1–xAlxAs barriers shows the 

effect of the dimensional static and dynamic charge on 

spectral parameters of quasi-stationary states (QSS) of 

an electron and an active dynamic conductivity of 

nanosystems. 

2. The theory of dynamic conduction in the three-

barrier active zone of quantum cascade lasers 

To calculate the active dynamic conduction of electrons 

in the three-barrier active zone of QCL, let us consider 

that the system is placed in the Cartesian coordinate 
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system in such a manner that its layers are perpendicular 

to the separation boundaries of nanosystems. The 

constant electric field F


 is applied along the normal to 

the layers of RTS. The geometric parameters of the 

system are known (Fig. 1). 

As the difference between the lattice constant at the 

interfaces layer-well and layer-barrier is negligible, the 

model of an effective mass and rectangular potentials 

can be applied to electrons: 
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where )(z  is the Heaviside function; 

 61 , zz ; mw and mb are the effective masses 

of electron in the potential wells and in barriers of the 

nanostructure.  

It is considered that the monochromatic electron 

flow with the energy E and initial concentration n0 falls 

along the normal to the layers of open RTS on the left. 

The electron flow is considered to be one-dimensional 

and can be described by the wave function ),( tz , 

satisfying the full Schrödinger equation. 
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is the Hamiltonian, which first summand describes 

interaction of electron with alternating electromagnetic 

field with the frequency ω and the tension amplitude of 

its electric component Є. The second summand 

describes interaction of electron with the dimensional 

space charge, which potential ),( tz  can be found from 

the Poisson equation:  
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is the dielectric permittivity of three-barrier RTS, εw and 

εb are dielectric permittivity of layer materials in 

potential wells and barriers, and   

2

0 ),(),( tzntzn      (7) 

is the variable in the electron density space.  

It is evident from the structure of equations (3) and 

(5), considering the Hamiltonian form (4) and the 

equation (7), that they form a self-consistent system.  

The solution of the full Schrödinger equation (3) 

with the Hamiltonian (4) in the weak signal 

approximation looks like: 
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Substituting the equivalence (7) in the Poisson 

equation (5), considering (8), with keeping the 

summands of the first degree, we have got the following 

equation: 
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For any p-layers from RTS, the solution of the 

equation (9) looks like that:  
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The following equations (12), (13) are got from (9), 

considering (11) after equating the values of the same 

order of smallness. 
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and its solutions are as follows: 
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Fig. 1. Geometrical and energetic schemes of the three-barrier RTS (a) and the renormalized potential profile of the three-barrier 

RTS, caused by the static charge from the dependence on z with the electron energy stEE 3  and charge carrier concentrations  

,cm102 317 n  5∙1017, 1018 (b).  

They determine the potential )()( zp
st  caused by the 

static space charge and potentials determined by the 

dimensional dynamic charge in the case of electronic 

transition with the absorption of )()( zp
  and emission 

of photons )()( zp
 . 

All the unknown coefficients 
)(

2
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1
)(
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pppp
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  are uniquely determined from 

the continuity conditions of the potential ),( tzp  and 

electric displacement field within all RTS.  

Substituting (11) and (8) from the full Schrödinger 

equation (5), after equating the coefficients of tie   to 

the variables of the zero degree, we have got the 

equation: 
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The resulting Schrödinger equations (16), (17) 

together with the Poisson equations (12), (13) form a set 

of mutually agreed equations.  

The solutions of them are as follows: 
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The formula to calculate the electric currents 

density through RTS is as follows: 
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And it is proportional to the real parts of the 

corresponding active dynamic conductivities ),(  E .  

The full active dynamic conductivity of RTS 

),(  E  can be determined as the sum of two partial 

components: 
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Fig. 2. Dependences of the transparency coefficient on the energy without (dotted line) and with the dimensional charge (solid 

lines) of the first three quasi-stationary states at concentrations n0 = 1017, 317 cm102   (a) and dependences of their resonance 

energies  st
3

st
2

st
1 ,, EEE  and widths  st

3
st
2

st
1 ,,   on the concentration n0 (b). 

 

3. Discussion of the results 

The calculation of the active dynamic conductivity and 

spectral parameters of quasi-stationary electronic states 

was done using the active zone of the experimental QCL 

as an example, which was described in the work [9] 

(Fig. 1). RTS contains In0.53Ga0.47As wells and 

In0.52Ga0.48As barriers and can be described by the 

following geometrical Δ1 = 4.5 nm, Δ2 = 1.0 nm, Δ3 = 

2.4 nm, b1 = 8.0 nm, b2 = 5.7 nm and physical mw = 

0.041me, mb = 0.082me, U = 516 meV, εw = 13.899, εb = 

12.726 parameters. Fig. 1b describes the potential profile 

of the studied RTS renormalized by the static charge that 

was calculated for different values of the concentration 

of electrons (n = 2∙10
17 

cm
–3

, 5∙10
17

, 10
18

). It is obvious 

from Fig. 1b that the increase of electron concentration 

causes deformation of the potential profile of 

nanosystem, which influences spectral characteristics of 

electronic QSS. The mentioned changes reflect the 

results of the calculation of the transparency coefficient 

D(E) (Fig. 2a) within the limits of energies of the first 

three QSS, the resonance energies st
nE , and the lifetimes 

of electrons st
n  (Fig. 2a) depending on the concentration 

of the charge n0, considering the space charge. 

As seen from Fig. 2a, the dimensional charge 

deforms the Lorentz shape to the wedge shape, causing 

the increase in values of all resonant energies ( st
nE ) and 

widths ( st
n ) (Fig. 2b). The values of the maxima of 

D(E) with augmentation of the concentration increase. 

As the electron lifetimes )( st
n  in the corresponding QSS 
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are related with resonant widths ( st
n ), as stst

nn   , so 

the augmentation of electron concentration causes its 

incensement. And it is the significant factor for the great 

values of n0.  

Fig. 3 shows the results of calculating the 

logarithms of the dynamic conductivity appearing in the 

quantum transition 3→2 and its partial components 

without (


 323232 ,, ) and considering 

(


 323232
~,~,~ ) the influence of the dimensional charge.  

Fig. 3 demonstrates that in the case of conductivity 

that was calculated excluding  the influence of the 

dimensional charge, the value of the component of the 

conduction determined by the electron flow to the output 

from nanosystems (
 ) is bigger than the component of 

the conductivity (
 ) defined by the flow in the 

opposite direction, i.e. 
  323232 . From the 

calculated dependences of the dynamic conductivity 

with considering the dimensional charge, it is obvious 

that with increasing the concentration of electrons n0, the 

total value of conductivity 32
~  increases and the partial 

conduction component, determined by the direct electron 

flow ( 32
~ ) decreases, but the component in the opposite 

direction ( 32
~ ) increases. Thus, the dimensional charge 

causes redistribution of partial components in the total 

value of conductivity with increasing the concentration. 

4. Conclusions 

The quantum-mechanical theory of the spectral 

parameters of quasi-stationary states and dynamic 

conductivity of three-barrier RTS with a constant 

electric field as an active zone of QCL, considering the 

variable dimensional charge appearing in the process of 

electron transport through the nanostructure in a variable 

electromagnetic field has been developed in this paper. 

The self-consistent solution of the Schrödinger and 

Poisson equations for different random electrons has 

been obtained in the model of effective masses and 

rectangular potentials. 

The calculation of resonant energies, resonance 

widths, active dynamic conductivity and its partial 

components in the nanosystem model that corresponds 

to the experimental values of QCL was made in this 

paper. The value of the resonant energies that correlates 

with the experimental data was calculated with the 

accuracy not less than 5%. It has been shown that with 

incensement of the concentration of electrons, the energy 

of laser radiation in a quantum transition 3→2 decreases, 

and the total value of active dynamic conductivity 

increases, thus the contribution of the partial component 

of conductivity determined by flow and directed 

opposite to the exit of nanosystems increases in it.  
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