Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N
2. P. 129-138. References 1. D. Saeedkia (ed.), Handbook of Terahertz Technology for Imaging, Sensing and Communications. Woodhead Publishing, Oxford, Cambridge, Philadelphia, New Delhi, 2013.https://doi.org/10.1533/9780857096494 2. C.M. Armstrong, The truth about terahertz. IEEE Spectrum, September, p. 36-41 (2012). https://doi.org/10.1109/MSPEC.2012.6281131 3. H. Kazemi, G. Nagy, L Tran et al., Ultra sensing ErAs/InAlGaAs direct detectors for millimeter wave and THz imaging applications. IEEE/MTT-S International Microwave Symposium, Honolulu, HI, June 3–8, 2007, p. 1367-1370. 4. J.L. Hesler and T.W. Crow, Responsivity and noise measurements of zero-bias Schottky diode detectors. Proc. IRMMW-THzTech, Cardiff, UK, Sept. 3-7, 2007, pp. 844-845. 5. H. Liu, J. Yu, P. Huggard, and B. Alderman, A multichannel THz detector using integrated bow-tie antennas. Int. J. Antennas Propag. 417108 (2013). https://doi.org/10.1155/2013/417108 6. M. Hoefle, K. Haehnsen, I. Oprea et al., Compact and sensitive millimetre wave detectors based on low barrier Schottky diodes on impedance matched planar antennas. J. Infrared Milli Terahz Waves, 35, p. 891-908 (2014). https://doi.org/10.1007/s10762-014-0090-z 7. M. Sakhno, A. Golenkov and F. Sizov, Uncooled detector challenges: Millimeter-wave and terahertz long channel field effect transistor and Schottky barrier diode detectors. J Appl. Phys. 114, 164503 (2013). https://doi.org/10.1063/1.4826364 8. M. Dyakonov and M. Shur, Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electron Devices, 43, p. 1640-1645 (1996). https://doi.org/10.1109/16.536809 9. W. Chew and H. R. Fetterman, Millimeter wave imaging using FET detectors integrated with printed circuit antennas. Int. J. Infr. Milli. Waves, 10, p. 565-578 (1989). https://doi.org/10.1007/BF01043255 10. S. Boppel, A. Lisauskas, M. Mundt et al., CMOS Integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz. IEEE Trans. Microw. Theory Techn. 60, p. 3834-3843 (2012). https://doi.org/10.1109/TMTT.2012.2221732 11. D.B. But, C. Drexler, M.V. Sakhno et al., Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities. J. Appl. Phys. 115, 164514 (2014). https://doi.org/10.1063/1.4872031 12. S. Regensburger, M. Mittendorff, S. Winnerl et al., Broadband THz detection from 0.1 to 22 THz with large area field-effect transistors. Opt. Express, 23, No.16, p. 20732-20742 (2014). https://doi.org/10.1364/OE.23.020732 13. A. Lisauskas, S. Boppel, J. Matukas, V. Palenskis, L. Minkevicius, G. Valusis, P. Haring-Bolıvar, and H. G. Roskos, Terahertz responsivity and low-frequency noise in biased silicon field-effect transistors. Appl. Phys. Lett. 102, 153505 (2013). https://doi.org/10.1063/1.4802208 14. A. Lisauskas,•M. Bauer,•S. Boppel et al., Exploration of terahertz imaging with silicon MOSFETs. J Infrared Milli Terahz Waves, 35, p. 63-80 (2014). https://doi.org/10.1007/s10762-013-0047-7 15. S. Preu, M. Mittendorf, S. Winnerl, H. Lu, A.C. Gossard, and H. B. Weber, Ultra-fast transistor-based detectors for precise timing of near infrared and THz signals. Opt. Express, 21 (15), p. 17941-17950 (2013). https://doi.org/10.1364/OE.21.017941 16. L. Liu, J.L. Hesler, H. Xu et al., A broadband quasi-optical THz detector using a zero bias Schottky diode. IEEE Microwave and Wireless Components Lett. 20, p. 504 (2010). https://doi.org/10.1109/LMWC.2010.2055553 17. A.J.M. Kreisler, Submillimeter wave applications of submicron Schottky diodes. Proc. SPIE, 666, p. 51-63 (1986). https://doi.org/10.1117/12.938820 18. W. Knap, V. Kachorovskii, Y. Deng et al., Non-resonant detection of terahertz radiation in field effect transistors. J. Appl. Phys. 91, p. 9346-9353 (2002). https://doi.org/10.1063/1.1468257 19. W. Knap and M. Dyakonov, Field effect transistors for terahertz applications, in: Handbook of Terahertz Technology for Imaging, Sensing and Communications, D. Saeedkia (ed.). Woodhead Publishing, Oxford, Cambridge, Philadelphia, New Delhi, 2013, p. 121-155. https://doi.org/10.1533/9780857096494.1.121 20. C. Sydlo, O. Cojocari, D. Schonner et al., Fast THz detectors based on InGaAs Schottky diodes. Frequenz, 62, p. 107-110 (2008). https://doi.org/10.1515/FREQ.2008.62.5-6.107 21. S.-P. Han, H. Ko, J.-W. Park et al., InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner. Opt. Express, 21, p. 25874-25882 (2013). https://doi.org/10.1364/OE.21.025874 22. V. Yu. Kachorovskii, S. L. Rumyantsev, W. Knap, and M. Shur, Performance limits for field effect transistors as terahertz detectors. Appl. Phys. Lett. 102, 223505 (2013). https://doi.org/10.1063/1.4809672 23. E. Öjefors, A. Lisauskas, D. Glaab, H.G. Roskos, and U.R. Pfeiffer, Terahertz imaging detectors in CMOS Technology. J. Infrared Milli Terahz Waves, 30, p. 1269-1280 (2009). https://doi.org/10.1007/s10762-009-9569-4 24. S. Boppel, A. Lisauskas, V. Krozer, and H.G. Ros-kos, Performance and performance variations of sub-1 THz detectors fabricated with 0.15 μm CMOS foundry process. Electr. Lett. 47, p. 661-662 (2011). https://doi.org/10.1049/el.2011.0687 25. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. Wiley-Interscience, 2006. https://doi.org/10.1002/0470068329 26. Y. Tsividis and C. McAndrew, Operation and Modeling of the MOS Transistor. Oxford University Press, 2011. 27. A.M. Cowley and H.O. Sorensen, Quantitative comparison of solid-state microwave detectors. IEEE Trans. Microwave Theory and Techniq. 14, p. 588 (1966). https://doi.org/10.1109/TMTT.1966.1126337 28. S. Preu, S. Kim, R. Verma, P. G. Burke, M.S. Sherwin, and A.C. Gossard, An improved model for non-resonant terahertz detection in field-effect transistors. J. Appl. Phys. 111, 024502 (2012). https://doi.org/10.1063/1.3676211 29. C.A. Balanis, Antenna Theory Analysis and Design, 3d Edition, Wiley, New Jersey, 2005. 30. J.L. Volakis (ed.), Antenna Engineering Handbook, 4th ed. New York, McGraw-Hill, 2007. 31. R. Tauk, F. Teppe, S. Boubanga et al., Plasma wave detection of terahertz radiation by silicon field effects transistoprs: Responsivity and noise equivalent power. Appl. Phys. Lett. 89, 253511 (2006). https://doi.org/10.1063/1.2410215 32. M.S. Shur and P. Maki (eds.), Advanced high speed devices, in: Selected Topics in Electronics and Systems, Vol. 51, World Scientific, Singapore, 2009, p. 1-187. 33. E. Ojefors, N. Baktash, Y. Zhao, R. Al Hadi, H. Sherry, and U. Pfeifer, Terahertz imaging detectors in a 65-nm CMOS SOI technology. IEEE Europ. Solid-State Circuits Conf., Seville, Spain, September, 2010, p. 486-489. https://doi.org/10.1109/esscirc.2010.5619749 34. U.R. Pfeifer, and E. Ojefors, A 600-GHz CMOS focal-plane array for terahertz imaging applications. Proc. Europ. Solid-State Circuits Conf., 2008, p. 110-113. https://doi.org/10.1109/esscirc.2008.4681804 35. A. Pleteršek, and J. Trontelj, A self-mixing NMOS channel-detector optimized for mm-wave and THZ signals. J. Infrared Milli Terahz Waves, 33, p. 615-626 (2012). https://doi.org/10.1007/s10762-012-9901-2 36. F. Schuster, D. Coquillat, H. Videlier et al., Broadband terahertz imaging with highly sensitive silicon CMOS detectors. Opt. Express, 19, p. 7827-7832 (2011). https://doi.org/10.1364/OE.19.007827 37. R. Al Hadi, H. Sherry, J. Grzyb et al., A broadband 0.6 to 1 THz CMOS imaging detector with an https://doi.org/10.1109/mwsym.2011.5972870 38. H. Sherry, R. Al Hadi, J. Grzyb, E. Ojefors, A. Cathelin, A. Kaiser, and U. R. Pfeifer, Lens-integrated imaging arrays in 65 nm CMOS technologies. Radio Freq. Integrated Circuits Symposium (RFIC), 2011, IEEE, June 5 – 7, 2011, Baltimore, MD, p. 365-368. 39. F. Sizov, A. Golenkov, D. But, N. Sakhno, and V. Reva, Sub-THz radiation room temperature sensitivity of long-channel silicon field effect transistors. Opto-Electr. Rev. 20, p. 194-199 (2012). 40. E.R. Brown, A.C. Young, J.E. Bjarnason, H. Kazemi, J. Zimmerman, and A.C. Gossard, Millimeter and sub-millimeter wave performance of an ErAs:InAlGaAs Schottky diode coupled to a single-turn square spiral. Int. J. High Speed Electronics and System, 17, p. 383-394 (2007). https://doi.org/10.1142/S0129156407004576 41. A. Semenov, O. Cojocari, H.-W. Hubers, F. Song, A. Klushin, and A.-S. Muller, Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz Radiation. IEEE Electr. Device Lett. 31, p. 674-676 (2010). https://doi.org/10.1109/LED.2010.2048192 42. A.C. Young, J.D. Zimmerman, E.R. Brown, and A.C. Gossard, High sensitivity in semimetal-semiconductor microwave rectifiers. Appl. Phys. Lett. 87, 163506 (2005). https://doi.org/10.1063/1.2112201 43. V.I. Shashkin, Yu.A. Drjagin, V.R. Zakamov, S.V. Krivov, L.M. Kukin & A.V. Murel, and Yu.I. Chechenin, Millimeter-wave detectors based on antenna-coupled low-barrier Schottky diodes. Int. J. Infrared Milli Waves, 28, p. 945-952 (2007). https://doi.org/10.1007/s10762-007-9272-2 44. V. Kubarev, G.M. Kazakevitch, Y. Uk Jeong, and B.Ch. Lee, Quasi-optical highly sensitive Schottky-barrier detector for a wide-band FIR FEL. Nuclear Instr. Methods Phys. Research, A 507, p. 523-526 (2003). 45. R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and O. Kenneth, "80 GHz and 860 GHz image sensors using schottky-barrier diodes in 0.13 µm digital CMOS. 2012 IEEE Intern. Solid-State Circuits Conf. Digest, p. 254-256 (2012). 46. P. Chahal, F. Morris, and G. Frazier, Zero bias resonant tunnel Schottky contact diode for wide-band direct detection. IEEE Electr. Device Lett. 26, p. 894-896 (2005). https://doi.org/10.1109/LED.2005.859622 47. J.D. Sun, Y.F. Sun, D.M. Wu, Y. Cai, H. Qin, and B.S. Zhang, High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor. Appl. Phys. Lett. 100, 013506 (2012). https://doi.org/10.1063/1.3673617 48. S. Boppel, M. Ragauskas, A. Hajo et al., Terahertz edge detectionwithantenna-coupled field-effect transistors in 0.25 µm AlGaN/GaN technology. 39-th Int. Conf. IR, Mm and THz Waves, September 14-19, 2014, Tuscon, AZ. 49. P. Sangare, G. Ducournau, B. Grimbert et al., Experimental demonstration of direct terahertz detection at room-temperature in AlGaN/GaN asymmetric nanochannels. J. Appl. Phys. 113, 034305 (2013). https://doi.org/10.1063/1.4775406 50. A.G. Golenkov, K.S. Zhuravlev, J.V. Gumenjuk-Sichevska, I.O. Lysiuk, F.F. Sizov, Sub-THz nonresonant detection in AlGaN/GaN hetero-junction FETs. Semiconductor Physics, Quantum Electronics & Optoelectronics, 18, p. 40-45 (2015). https://doi.org/10.15407/spqeo18.01.040 51. D.M. Yermolaev, K.M. Marem'yanin, D.V. Fateev et al., Terahertz detection in a slit-grating-gate field-effect-transistor structure. Solid-State Electron. 86, p. 64-67 (2013). https://doi.org/10.1016/j.sse.2012.09.009 52. F. Sizov, V. Reva, A. Golenkov, V. Zabudsky, Uncooled detector challenges for THz/sub-THz arrays imaging. J. Infrared Milli Terahz Waves, 32, p. 1192-1206 (2011). https://doi.org/10.1007/s10762-011-9789-2 53. A. Golenkov, F. Sizov, Terahertz FET direct detection rectifying detectors. Proc. Medi-terranean Microwave Symposium, Lecce, Italy, November 30 – December 2, 2015, p. 204-207. https://doi.org/10.1109/mms.2015.7375470 |