Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N
2. P. 139-148. References 1. L. Li, F.T. Zi, Polymer thin films, prepared by RF sputtering of PTFE on NiTi alloy. Mater. Sci. forum, 561, p. 1229-1232 (2007).https://doi.org/10.4028/www.scientific.net/MSF.561-565.1229 2. L. Li, F.T. Zi, Y.F. Zheng, The characterization of fluorocarbon films on NiTi alloy by magnetron sputtering. Appl. Surf. Sci. 255, p.432-434 (2008). https://doi.org/10.1016/j.apsusc.2008.06.174 3. S.S. Anjum, J. Rao and J.R. Nicholls, Polymer (PTFE) and shape memory alloy (NiTi) intercalated nano-biocomposites. Intern. Conf. on Structural Nano Composites (NANOSTRUC 2012), IOP Conf. Series: Mater. Sci. and Eng. 40, p.1-7 (2012). https://doi.org/10.1088/1757-899X/40/1/012006 4. S. Bao, K. Tajima, Y. Yamada, M. Okada and K. Yoshimura, Polytetrafluoroethylene (PTFE) top-covered Mg-Ni switchable mirror thin films. Materials Trans. 49(8), p. 1919-1921 (2008). https://doi.org/10.2320/matertrans.MRP2008117 5. N. Selvakumar, H.C. Barshilia, M. Ramesh, K.S. Rajam, Effect of substrate roughness on contact angle of sputter deposited superhydrophobic PTFE coatings. Conference Surface Modification Technologies XXIII, Ed. T.S. Sudarshan, U.K. Mudali and B. Raj, India, 2009, p. 1-7. 6. Hwa-Min Kim, J. Jang and S. Sohn, Super-hydrophobicity of PTFE films coated on an etched Al surface by using a RF-magnetron sputtering method. J. Korean Phys. Soc. 57(5), p. 1281-1284 (2010). https://doi.org/10.3938/jkps.57.1281 7. W.J. Khudhayer, R. Sharma and T. Karabacak, Hydrophobic metallic nanorods with Teflon nanopatches. Nanotechnology, 20, p. 1-9 (2009). https://doi.org/10.1088/0957-4484/20/27/275302 8. W.J. Khudhayer, R. Sharma and T. Karabacak, Hydrophobic metallic nanorods coated with Teflon nanopatches by glancing angle deposition. Mater. Res. Soc. Symp. Proc. 1188, 1188-LL09-03 (2009). 9. H. Zheng, M. Breedon, K. Kalantar-zadeh, UV-induced wettability change of Teflon-modified ZnO nanorod arrays on LiNbO3 substrate. ICONN, IEEE, p. 218-2212 (2008). 10. G. Ozaydin-Ince, A.M. Coclite and K.K. Gleason, CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes. Rep. Prog. Phys. 75, p. 1-41 (2012). https://doi.org/10.1088/0034-4885/75/1/016501 11. K.K. Lee, B. Bhushan, D. Hansford, Nanotribo-logical characterization of fluoropolymer thin films for biomedical micro/nanoelectromechanical system applications. J. Vac. Sci. Technol. A, 234, p. 804-810 (2005). https://doi.org/10.1116/1.1861939 12. J.D. Talton, B. Eppler, and J.M. Fitz-Gerald, Pulsed laser-assisted surface modification / functionalization. Surfaces in Biomaterials, 8(2), p. 4 (2003). 13. V. Nelea, S. Holvoet, S. Turgeon and D. Mantovani, Deposition of fluorocarbon thin films on outer and inner surfaces of stainless steel mini-tubes by pulsed plasma polymerization for stents. J. Phys. D: Appl. Phys. 42, p. 1-9 (2009). https://doi.org/10.1088/0022-3727/42/22/225208 14. S. Holvoet, P. Chevallier, S. Turgeon and D. Mantovani, Toward high-performance coatings for biomedical devices: Study on plasma-deposited fluorocarbon films and ageing in PBS. Materials, 3, p. 1515-1532 (2010). https://doi.org/10.3390/ma3031515 15. P. Favia, Plasma deposited coatings for biomedical materials and devices: Fluorocarbon and PEO-like coatings. Surface & Coatings Technol. 211, p. 50-56 (2012). https://doi.org/10.1016/j.surfcoat.2012.01.032 16. A.P. Piedade, J. Nunes, M.T. Vieira, Thin films with chemically graded functionality based on fluorine polymers and stainless steel. Acta Biomaterialia, 4, p. 1073-1080 (2008). https://doi.org/10.1016/j.actbio.2008.02.023 17. http://www.seac1.com/ 18. http://www.thierry-corp.com/pecvd-plasma-coating 19. Yan Zhang, E.T. Kang, K.G. Neoh, S.S. Ang, and A.C.H. Huan, Surface passivation of (100)-oriented GaAs with ultrathin fluoropolymer films deposited by radio frequency magnetron sputtering of poly(tetrafluoroethylene). J. Electrochem. Soc. 150(3), p. 53-59 (2003). https://doi.org/10.1149/1.1545466 20. D.S. Bodasa, A.B. Mandalea, S.A. Gangala, Deposition of PTFE thin films by RF plasma sputtering on 〈100〉 silicon substrates. Appl. Surf. Sci. 245(1-4), p. 202-207 (2005). https://doi.org/10.1016/j.apsusc.2004.10.023 21. J. Piwowarczyk, R. Jędrzejewski, K. Kwiatkowski, J. Baranowska, PTFE thin films obtained by pulsed electron beam deposition and pulsed laser deposition methods. 9-th Symposium on Vacuum Based Sci. and Technol. November, 17-19, 2015, Koszalin-Kołobrzeg, Poland, p. O14. 22. U. Anthes, R. Dpmbrowski, M. Fritz, Method 23. K.P. Gritsenko, V.S. Gritsenko, Evaporation elements for polymer coatings deposition by vacuum evaporation. Powder metallurgy, 2, p. 98-100 (1990), in Russian. 24. T. Defforg, M. Capelle, F. Tran-Van and G. Gautier, Plasma-deposited fluoropolymer film mask for local porous silicon formation. Nanoscale Res. Lett. 7(1), p. 344-351 (2012). https://doi.org/10.1186/1556-276X-7-344 25. F. Huang, Q. Wei, Ya Liu, W. Gao, Y. Huang, Surface functionalization of silk fabric by PTFE sputter coating. J. Mater. Sci. p. 8025-8028 (2007). https://doi.org/10.1007/s10853-007-1580-3 26. F.L. Huang, Q.F. Wei, W.Z. Xu and Q. Li, Preparation and characterizations of PTFE gradient nanostructure on silk fabric. Surface Rev. and Lett. 14(4), p. 547-551 (2007). https://doi.org/10.1142/S0218625X07009827 27. G.A.J. Amaratunga, W.I. Milne, G.H. McKinley and K.K. Gleason, Superhydrophobic carbon nanotube forests. Nano Lett. 3(12), p. 1701-1705 (2003). https://doi.org/10.1021/nl034704t 28. E.M. Tolstopyatov, Physical backgrounds of the dissotiative formation of the polymer coatings. Thes. Dr. Sci., Gomel, 2007 (in Russian). 29. T. Barfels, Carbon Nano-Tubes and Nano-Diamonds in applied research. Cross beam workshop, Zeiss, Dez. p. 29 (2013). 30. www.elem1.com 31. S.C. Gadkari, Manmeet Kaur, V.R. Katti, V.B. Bhandarkar, K.P. Muthe, and S.K. Gupta, Solid state sensors for toxic gases. Founders day special issue, p. 49-60 (2005). 32. G. Yamamoto, T. Yamashita, K. Matsuo, T. Hyodo and Y. Shimizu, Effects of polytetrafluoroethylene or polyimide coating on H2 sensing properties of anodized TiO2 films equipped with Pd-Pt electrodes. Sensors and Actuators B: Chemical, 183, p. 253-264 (2013). https://doi.org/10.1016/j.snb.2013.03.136 33. R.J. Westerwaal, S. Gersen, P. Ngene, H. Dar-meveil, H. Schreuders, J. Middelkoop, B. Dam, Fiber optic hydrogen sensor for a continuously monitoring of the partial hydrogen pressure in the natural gas grid. Sensors and Actuators B, 199, p. 127-132 (2014). https://doi.org/10.1016/j.snb.2014.03.048 34. T. Mak, R.J. Westerwaal, M. Slaman, H. Schreu-ders, A.W. van Vugt, M. Victoria, C. Boelsma, B. Dam, Optical fiber sensor for the continuous monitoring of hydrogen in oil. Sensors and Actuators B, 190, p. 982-989 (2014). https://doi.org/10.1016/j.snb.2013.09.080 35. P. Ngene, R.J. Westerwaal, S. Sachdeva, W. Haije, L.C. P. M. de Smet and B. Dam, Polymer-induced surface modifications of Pd-based thin films leading to improved kinetics in hydrogen sensing and energy storage. Angewandte Chemie Int. Ed. 53, p. 12081-12085 (2014). https://doi.org/10.1002/anie.201406911 36. http://www.adz.de/new-products.html; http://www.variohm.com/pressrelease/detail.php?aid=91&did=Level-sensor-with-extremely-high-corrosion-resistance; http://www.theengineer.co.uk/supplier-network/ 37. http://www.plasma.de/en/plasmatechnique/plasmaapplications.html#8 encapsulation of PTFE like films by plasma. 38. C. Pannemann, T. Diekmann, U. Hilleringmann et al., PTFE encapsulation for pentacene based organic thin film transistors. Materials Sci. 25(1), p. 95-101 (2007). 39. C. Pannemann, Prozesstechnik für organische Feldeffekt Transistoren: Kontakte, Dielektrika und Oberflächenpassivierungen. Diss. Ph. D., 14/224, Padeborn, 2006. 40. C. Tulkoff, C. Hillman, Understanding nanocoating technology. ESTC, May, Las Vegas, p. 1-52 (2013). 41. A. Brooks, G. Hennighan, S. Woollard, T. von Werne, Plasma polymerization: A versatile and attractive process for conformal coating. IPC APEX EXPO Proc. p. 38-45 (2013). 42. F. Colombo, J. Shah, S. Pendlebury, Protecting electro-optical devices with a fluoropolymer. Patent 20050070196, USA, 2005. 43. http://appleinsider.com/articles/15/03/05/apple-researching-device-waterproofing-via-vapor-deposition-silicone-seals 44. K.P. Gritsenko, Mechanism of PTFE film growth in vacuum. Ukrainian Chem. J. 57(7), p. 782-784 (1991), in Russian. 45. K.P. Gritsenko, Yu.I. Khimchenko, G.V. Lantoukh, Deposition of barrier sublayer of optical carrier by evaporation of polytetrafluoroethylene in vacuum with ionization of degradation products, in book: Optical Recording Information, Ed. V.V. Petrov. Naukova Dumka, Kiev, 1987, p. 85-88 (in Russian). 46. V.V. Petrov, K.P. Gritsenko, A.A. Kriuchin, Research on films structure produced by co-evaporation metals and PTFE in vacuum. Doklady Akademii Nauk Ukrain. SSR, 2, p. 64-68 (1989), in Russian. 47. K.P. Gritsenko, A.M. Krasovsky, Thin film deposition of polymers by vacuum degradation. Chem. Rev. 103(9), p. 3607-3650 (2003). https://doi.org/10.1021/cr010449q 48. K.P. Gritsenko, O.P. Dimitriev, V.V. Kisluk, O.M. Getsko, S. Schrader, L. Brehmer, Dye-fluoro-polymer nanocomposite film deposition in vacuum. Colloids & Surf. A: Physchem. Eng. Aspects, 198-200, p. 625-632 (2002). https://doi.org/10.1016/S0927-7757(01)00977-3 49. K.P. Grytsenko, S. Schrader, Nanoclusters in polymer matrices prepared by co-deposition from a gas phase. Adv. in Colloid and Interface Sci. 116, p. 263-276 (2005). https://doi.org/10.1016/j.cis.2005.04.005 50. K.P. Gritsenko, A. Capobianchi, A. Convertino, J. Friedrich, R.D. Schulze, V. Ksensov, S. Schrader, Polymer-metal composite thin film prepared by co-evaporation in vacuum, in book: Polymer Surface Modification and Polymer Coatings by Dry Process Technologies, Ed. S. Iwamori, Research Signpost, Kerala, 2005, p. 85-109. 51. K. Grytsenko, O. Navozenko, Yu. Kolomzarov et al., Optical properties of dye-filled polymer films, deposited in vacuum. Data Record., Storage & Proc. 14(1), p. 3-9 (2012). 52. K.P. Grytsenko, V.F. Machulin, A.O. Ait, A.M. Gorelik, O.I. Kobeleva, T.M. Valova, V.A. Barachevsky, Photochromic films prepared by vacuum co-deposition of polymer and spiropyrans. Optical Memory and Neural Networks, 19(3), p. 254-259 (2010). https://doi.org/10.3103/S1060992X10030070 53. O.I. Kobeleva, T.M. Valova, A.O. Ait, V.A. Ba-rachevsky, K.P. Grytsenko, V.F. Machulin, M.M. Krayushkin, Photochromic properties of composite films of thermally irreversible diarylethenes and fulgimides in polytetrafluoroethylene matrix. Semiconductor Physics, Quantum Electronics & Optoelectronics, 14(4), p. 441-444 (2011). https://doi.org/10.15407/spqeo14.04.441 54. K. Grytsenko, S. Schrader, H. Detert, Ultra-stable dye-filled polytetrafluoroethylene thin films. Nanosci. & Technol. 1(2), p. 1-5 (2014). https://doi.org/10.15226/2374-8141/1/2/00112 55. K. Grytsenko, S. Schrader, O. Tolmachev, Yu. Slominski, V. Barachevsky, O. Kobeleva, Non-conventional properties of dyes in polytetrafluoro-ethylene matrix. Abstracts of Conf. European Optical Soc., Paris, October 5, 2010, p. 635. 56. K. Grytsenko, T. Doroshenko, Yu. Kolomzarov et al., Growth and optical properties of film of dyes and dye-in-polymer matrix, deposited by evaporation in vacuum. Semiconductor Physics, Quantum Electronics & Optoelectronics, 13(2), p. 177-179 (2010). 57. I.V. Gorbov, A.A. Kryuchyn, K.P. Grytsenko, D.Yu. Manko, Yu.O. Borodin, High-density data recording via laser thermo-lithography and ion-beam etching. Semiconductor Physics, Quantum Electronics & Optoelectronics, 17(1), p. 52-55 (2014). https://doi.org/10.15407/spqeo17.01.052 58. V.V. Petrov, A.A. Kryuchin, I.V. Gorbov et al., Photosensitive material for optical recording. Patent 201403344 Ukraine, 2014. 59. K. Grytsenko, Yu. Kolomzarov, P. Lytvyn, Technology of thin films of photosensitive nanocomposite materials and their properties, including pits morphology. Project STCU 5709, Final Report, p. 1-20 (2013). 60. L. Ivanov, K. Grytsenko, Yu. Kolomzarov, O. Tol-machev, Yu. Slominskii, S. Schrader, Organized structures in PTFE film filled with dye and metal nanoparticles and novel research trends. Abstracts of Conference Polycomtrib-2015, June 23-26, 2015, Gomel, p. 29. |