Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N 2. P. 156-161.
DOI: https://doi.org/10.15407/spqeo19.02.156


References

1.    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391(6668), p. 667-669 (1998).
https://doi.org/10.1038/35570
 
2.    A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, S. Hava, Metal grating on a substrate nanostructure for sensor applications. Photonics and Nanostructures – Fundamentals and Applications, 7(4), p. 170-175 (2009).
 
3.    N.C. Lindquist, P. Nagpal, K.M. McPeak, D.J. Norris, S.H. Oh, Engineering metallic nanostructures for plasmonics and nanophotonics. Repts. Prog. Phys. 75(3), 036501(2012).
https://doi.org/10.1088/0034-4885/75/3/036501
 
4.    Z. Liu, H. Li, G. Cao, H. Xu, G. Yan, H. Yang, X. Xu, Tunable optical transmission properties of Au/Al multilayer slit gratings. J. Opt. 14(5), 055003 (2012).
https://doi.org/10.1088/2040-8978/14/5/055003
 
5.    M.A. Vincenti, D. de Ceglia, M. Scalora, Nonlinear response of GaAs gratings in the extraordinary transmission regime. Opt. Lett. 36(23), p. 4674-4676 (2011).
https://doi.org/10.1364/OL.36.004674
 
6.    A. Barbara, P. Quémerais, E. Bustarret, T. Lopez-Rios, Optical transmission through subwavelength metallic gratings. Phys. Rev. B, 66(16), 161403 (2002).
https://doi.org/10.1103/PhysRevB.66.161403
 
7.    M.M.J. Treacy, Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings. Phys. Rev. B, 66(19), 195105 (2002).
https://doi.org/10.1103/PhysRevB.66.195105
 
8.    G. Gay, O. Alloschery, B.V. De Lesegno, J. Weiner, H.J. Lezec, Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry. Phys. Rev. Lett. 96(21), 213901 (2006).
https://doi.org/10.1103/PhysRevLett.96.213901
 
9.    J. Wang, Y. Wang, X. Zhang, K. Yang, Y. Wang, S. Liu, Y. Song, Investigation on the transmission of subwavelength metallic cavity arrays. Optik – Intern. J. for Light and Electron Optics, 122(18), p. 1650-1653 (2011).
https://doi.org/10.1016/j.ijleo.2010.10.019
 
10.    L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, T.W. Ebbesen, Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86(6), p. 1114 (2001).
https://doi.org/10.1103/PhysRevLett.86.1114
 
11.    D. Pacifici, H.J. Lezec, H.A. Atwater, J. Weiner, Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits. Phys. Rev. B, 77(11), 115411(2008).
https://doi.org/10.1103/PhysRevB.77.115411
 
12.    N. Yao, M. Pu, C. Hu, Z.A. Lai, Z. Zhao, X. Luo, Dynamical modulating the directional excitation of surface plasmons sources. Optik – Intern. J. for Light and Electron Optics, 123(16), p. 1465-1468 (2012).
https://doi.org/10.1016/j.ijleo.2011.09.006
 
13.    W. Barnes, W. Murray, J. Dintinger, E. Devaux, T.W. Ebbesen, Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett. 92(10), 107401 (2004).
https://doi.org/10.1103/PhysRevLett.92.107401
 
14.    H. Liu, P. Lalanne, Microscopic theory of the extraordinary optical transmission. Nature, 452(7188), p. 728-731 (2008).
https://doi.org/10.1038/nature06762
 
15.    F.J. Garcia-Vidal, L. Martin-Moreno, T.W. Ebbesen, L. Kuipers, Light passing through subwavelength apertures. Rev. Mod. Phys. 82(1), p. 729 (2010).
https://doi.org/10.1103/RevModPhys.82.729
 
16.    J.A. Porto, F.J. Garcia-Vidal, J.B. Pendry, Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 83(14), p. 2845 (1999).
https://doi.org/10.1103/PhysRevLett.83.2845
 
17.    Q. Cao, P. Lalanne Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys. Rev. Lett. 88(5), 057403 (2002).
https://doi.org/10.1103/PhysRevLett.88.057403
 
18.    H. Lezec, T. Thio, Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt. Exp. 12(16), p. 3629-3651 (2004).
https://doi.org/10.1364/OPEX.12.003629
 
19.    V.M. Fitio, Transmissions of Metallic Gratings with Narrow Slots. In: Laser and Fiber-Optical Networks Modeling, 8-th Intern. Conf. on IEEE, June, 2006, p. 113-116.
https://doi.org/10.1109/lfnm.2006.251996
 
20.    I.Y. Yaremchuk, V.M. Fitio, & Y.V. Bobitski, High transmission of light through metallic grating limited by dielectric layers. LFNM'2013, p. 74 (2013).
https://doi.org/10.1109/lfnm.2013.6644840
 
21.    E. Moreno, L. Martín-Moreno, F.J. García-Vidal Extraordinary optical transmission without plasmons: the s-polarization case. J. Opt. A: Pure and Appl. Optics, 8(4), p. S94(2006).
https://doi.org/10.1088/1464-4258/8/4/S07
 
22.    H. Li, B.C. Liu, TE Polarization extraordinary transmission through metallic grating with subwavelength slits. Procedia Eng. 29, p. 381-385 (2012).
https://doi.org/10.1016/j.proeng.2011.12.727
 
23.    W. Liu, G. Hu, H. Zhu, Y. Chen, Waveguide-metal – dielectric bi-layer gratings for reflective filtering and color security. Optik – Intern. J. for Light and Electron Optics, 126(11), p. 1245-1248 (2015).
https://doi.org/10.1016/j.ijleo.2015.04.001
 
24.    N. Nguyen-Huu, Y.L. Lo, Y.B. Chen, Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating. Opt. Communs. 284(10), p. 2473-2479 (2011).
https://doi.org/10.1016/j.optcom.2011.01.035
 
25.    R. Hu, Y. Liang, S. Qian, W. Peng, Dual-band bandpass filter based on compound metallic grating waveguide structure. Opt. Communs. 336, p. 110-115 (2015).
https://doi.org/10.1016/j.optcom.2014.09.064
 
26.    M. Sharma, S. Pal Design and analysis of nano-deep corrugated waveguide grating-based dual-resonant filters in visible and infra-red regions. Optik – Intern. J. for Light and Electron Optics, 124(18), p. 3562-3566 (2013).
https://doi.org/10.1016/j.ijleo.2012.10.066
 
27.    M.G. Moharam, T.K. Gaylord, Rigorous coupled wave analysis of planar-grating diffraction. JOSA, 71(7), p. 811-818 (1981).
https://doi.org/10.1364/JOSA.71.000811
 
28.    M.G. Moharam, T.K. Gaylord, E.B. Grann, D.A. Pommet, Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. JOSA A, 12(5), p. 1068-1076 (1995).
https://doi.org/10.1364/JOSAA.12.001068
 
29.    L. Li, Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. JOSA A, 13(5), p. 1024-1035 (1996).
https://doi.org/10.1364/JOSAA.13.001024
 
30.    P. Lalanne, J.P. Hugonin, S. Astilean, M. Palamaru, One-mode model and Airy-like formulae for one-dimensional metallic gratings. J. Opt. A: Pure and Appl. Opt. 2(1), p. 48 (2000).
https://doi.org/10.1088/1464-4258/2/1/309
 
31.    A. Benabbas, V. Halté, J.Y. Bigot, Analytical model of the optical response of periodically structured metallic films. Optics Exp. 13(22), p. 8730-8745 (2005).
https://doi.org/10.1364/OPEX.13.008730
 
32.    I. Yaremchuk, T. Tamulevičius, V. Fitio, I. Gražulevičiūte, Y. Bobitski, S. Tamulevičius, Numerical implementation of the S-matrix algorithm for modeling of relief diffraction gratings. J. Modern Opt. 60(20), p. 1781-1788 (2013).
https://doi.org/10.1080/09500340.2013.861032
 
33.    H.G. Unger, Planar Optical Waveguides and Fibres. Oxford Eng. Science Series, Oxford, Clarendon Press, p. 1 (1977).
 
34.    M. Guillaumée, A.Y. Nikitin, M.J.K. Klein, L.A. Dunbar, V. Spassov, R. Eckert, R.P. Stanley, Observation of enhanced transmission for s-polarized light through a subwavelength slit. Optics Exp. 18(9), p. 9722-9727 (2010).
https://doi.org/10.1364/OE.18.009722