Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N
2. P. 162-168. References 1. G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Král, and R. Klajn, Self-assembly of magnetite nanocubes into helical superstructures. Science, 345(6201), p. 1149-1153 (2014).https://doi.org/10.1126/science.1254132 2. L. Bartels, Tailoring molecular layers at metal surfaces. Nature Chemistry, 2, p. 87-95 (2010). https://doi.org/10.1038/nchem.517 3. S. Lukas, G. Witte, and Ch. Wöll, Novel mechanism for molecular self-assembly on metal substrates: Unidirectional rows of pentacene on Cu(110) produced by a substrate-mediated repulsion. Phys. Rev. Lett. 88(2), 028301 (2002). https://doi.org/10.1103/PhysRevLett.88.028301 4. M. Kind and Ch. Wöll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Prog. Surf. Sci. 84(7–8), p. 230-278 (2009). https://doi.org/10.1016/j.progsurf.2009.06.001 5. D. Rayane, I. Compagnon, R. Antoine, M. Broyer, P. Dugourd, P. Labastie, J.M. L'Hermite, A. Le Padellec et al., Electric dipole moments and polarizabilities of single excess electron sodium fluoride clusters: experiment and theory. J. Chem. Phys. 116, p. 10730-10738 (2002). https://doi.org/10.1063/1.1480595 6. K. Hoang, M.-S. Lee, S. D. Mahanti, and P. Jena, Clusters: an embryonic form of crystals and nanostructures, Chap. 2, in: Nanoclusters: A Bridge Across Disciplines, Eds. P. Jena, A. W. Castleman Jr., Elsevier, Amsterdam, 2010, p. 37-71. https://doi.org/10.1016/B978-0-444-53440-8.00002-1 7. V. Lozovski and V. Piatnytsia, The potential of the interaction between of two nonpoint nanoparticles. J. Comput. Theor. Nanosci. 10(9), p. 2288-2298 (2013). https://doi.org/10.1166/jctn.2013.3200 8. D. Kysylychyn, V. Piatnytsia, and V. Lozovski, Electrodynamic interaction between a nanoparticle and the surface of a solid. Phys. Rev. E, 88, 052403 (2013). https://doi.org/10.1103/PhysRevE.88.052403 9. K. Makhnovets and A. Kolezhuk, On short-range enhancement of Van-der-Waals forces. Mat.-wiss. u. Werkstofftech. 47(2-3), p. 222-228 (2016). https://doi.org/10.1002/mawe.201600461 10. J.D. Jackson, Classical Electrodynamics, 3rd ed. Wiley, 1999, p. 155. 11. J.E. Lennard-Jones, Processes of adsorption and diffusion on solid surfaces. Trans. Faraday Soc. 28, p. 333-359 (1932). https://doi.org/10.1039/tf9322800333 12. C. Mavroyannis, The interaction of neutral molecules with dielectric surfaces. Molecular Phys. 6(6), p. 593-600 (1962). https://doi.org/10.1080/00268976300100691 13. A. Shih and V.A. Parsegian, Van der Waals forces between heavy alkali atoms and gold surfaces: comparison of measured and predicted values. Phys. Rev. A, 12(3), p. 835-841 (1975). https://doi.org/10.1103/PhysRevA.12.835 14. W. Janke and H. Kleinert, Convergent strong-coupling expansions from divergent weak-coupling perturbation theory. Phys. Rev. Lett. 75(15), p. 2787-2791 (1995). https://doi.org/10.1103/PhysRevLett.75.2787 |