Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N 2. P. 208-214.
DOI: https://doi.org/10.15407/spqeo19.02.208


References


1.    A. Reznitsky, S. Permogorov, S. Verbin, A. Nau-mov, Yu. Korostelin, V. Novozhilov, S. Prokof'ev, Localization of excitons and Anderson transition in ZnSe1−xTex solid solutions. Solid State Communs. 52, p. 13-16 (1984).
https://doi.org/10.1016/0038-1098(84)90708-7
 
2.    Chin-Hau Chia, Wen-Chung Fan, Yan-Chen Lin, Wu-Ching Chou, Radiative recombination of indirect exciton in type-II ZnSeTe/ZnSe multiple quantum wells. J. Lumin. 131, p. 956-959 (2011).
https://doi.org/10.1016/j.jlumin.2010.12.031
 
3.    U.E.H. Laheld, F.B. Pederson, P.C. Hemmer, Excitons in type-II quantum dots: Finite offsets. Phys. Rev. B, 52, p. 2697-2703 (1995).
https://doi.org/10.1103/PhysRevB.52.2697
 
4.    G.G. Zegrya, A.D. Andreev, Mechanism of suppression of Auger recombination processes in type-II heterostructures. Appl. Phys. Lett. 67, p. 2681-2683 (1995).
https://doi.org/10.1063/1.114291
 
5.    A.I. Yakimov, A.V. Dvurechenskii, A.I. Nikiforov, V.V. Ivanov, A.G. Milekhin, A.O. Govorov, S. Schulze, D.R.T. Zahn, Stark effect in type-II Ge/Si quantum dots. Phys. Rev. B, 67, p. 125318 (2003).
https://doi.org/10.1103/PhysRevB.67.125318
 
6.    R.J. Warburton, C. Schulhauser, D. Haft, C. Schaflein, K. Karrai, J.M. Garcia, W. Schoenfeld, P.M. Petroff, Giant permanent dipole moments of excitons in semiconductor nanostructures. Phys. Rev. B, 65, p. 113303 (2002).
https://doi.org/10.1103/PhysRevB.65.113303
 
7.    I. Vurgaftman, J.R. Meyer, N. Tansu, and L.J. Mawst, (In)GaAsN-GaAsSb type-II "W" quantum-well lasers for emission at λ = 1.55 μm. Appl. Phys. Lett. 83, p. 2742-2744 (2003).
https://doi.org/10.1063/1.1616193
 
8.    J. Schrier, D.O. Demchenko, L.W. Wang, and A.P. Alivisatos, Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 7, p. 2377-2382 (2007).
https://doi.org/10.1021/nl071027k
 
9.    A.R. Giehl, M. Gumbel, C. Schwender, N. Herhammer, and H. Fouckhardt, Waveguide-based type-II heterostructure photodiode on InAs substrate with broad wavelength range photoresponse. IEEE Photonics Technol. Lett. 16, p. 1358-1360 (2004).
https://doi.org/10.1109/LPT.2004.825985
 
10.    R. Sidhu, N. Duan, J. Campbell and A. Holmes, A long-wavelength photodiode on InP using lattice-matched GaInAs-GaAsSb type-II quantum wells. IEEE Photon. Technol. Lett. 17, p. 2715-2717 (2005).
https://doi.org/10.1109/LPT.2005.859163
 
11.    H.S. Kim, O.O. Cellek, Zhi-Yuan Lin, Zhao-Yu He, Xin-Hao Zhao, Shi Liu, H. Li, and Y.-H. Zhanga, Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices. Appl. Phys. Lett. 101, p. 161114 (2012).
https://doi.org/10.1063/1.4760260
 
12.    M.A. Petruska, A. Malko, P.M. Voyles, and V.I. Klimov, High-performance, quantum dot nanocomposites for nonlinear optical and optical gain applications. Adv. Mater. 7-8, p. 610-613 (2003).
https://doi.org/10.1002/adma.200304450
 
13.    V.S. Bagaev, V.S. Krivobok, S.N. Nikolaev, A.V. Novikov, E.E. Onishchenko, M.L. Skorikov, Observation of the electron-hole liquid in Si1−xGex/Si quantum wells by steady state and time resolved photoluminescence measurements. Phys. Rev. B, 82, p. 115313 (2010).
https://doi.org/10.1103/PhysRevB.82.115313
 
14.    T.M. Burbaev, M.N. Gordeev, D.N. Lobanov, A.V. Novikov, M.M. Rzaev, N. N. Sibel'din, M.L. Skorikov, V.A. Tsvetkov, and D.V. Shepel', Electron–hole liquid and excitonic molecules in quasi-two-dimensional SiGe layers of Si/SiGe/Si heterostructures. JETP Lett. 92, p. 305-309 (2010).
https://doi.org/10.1134/S002136401017008X
 
15.    T. Baier, U. Mantz, K. Thonke, and R. Sauer, F. Schaffier and H.-J. Herzog, Type-II band alignment in Si/Si1−xGex quantum wells from photoluminescence line shifts due to optically induced band-bending effects: Experiment and theory. Phys. Rev. B, 50, p. 15191-15196 (1994).
https://doi.org/10.1103/PhysRevB.50.15191
 
16.    M. Matsuura and Y. Shinozuka, Excitons in type-II quantum-well systems: Binding of the spatially separated electron and hole. Phys. Rev. B, 38, p. 9830-9837(1988).
https://doi.org/10.1103/PhysRevB.38.9830
 
17.    A. Bellabchara, P. Lefebvre, P. Christol, and H. Mathieu, Improved modeling of excitons in type-II semiconductor heterostructures by use of a three-dimensional variational function. Phys. Rev. B, 50, p. 11840-11844 (1994).
https://doi.org/10.1103/PhysRevB.50.11840
 
18.    A. Chaves, J. Costa e Silva, J.A.K. Freire and G.A. Farias, Excitonic properties of type-I and type-II Si/Si1−xGex quantum wells. J. Appl. Phys. 101, p. 113703 (2007).
https://doi.org/10.1063/1.2723857
 
19.    H.Y. Chao, J.H. Cheng, J.Y. Lu, Y.H. Chang, C.L. Cheng, Y.F. Chen, Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications. Superlattices and Microstructures, 47, p. 160-164 (2010).
https://doi.org/10.1016/j.spmi.2009.07.005
 
20.    H.L. Pan, T. Yang, B. Yao, R. Deng, R.Y. Sui, L.L. Gao, and D.Z. Shen, Characterization and properties of ZnO1−xSx alloy films fabricated by radio-frequency magnetron sputtering. Appl. Surf. Sci. 256, p. 4621-4625 (2010).
https://doi.org/10.1016/j.apsusc.2010.02.061
 
21.    M. Jaquez, K.M. Yu, M. Ting, M. Hettick, J.F. Sanchez-Royo, M. Wełna, A. Javey, O.D. Dubon, and W. Walukiewicz, Growth and characterization of ZnO1−xSx highly mismatched alloys over the entire composition. J. Appl. Phys. 118, p. 215702 (2015).
https://doi.org/10.1063/1.4936551
 
22.    M. Ting, R. dos Reis, M. Jaquez, O.D. Dubon, S.S. Mao, K.M. Yu, and W. Walukiewicz, Electronic band structure of ZnO-rich highly mismatched ZnO1−xTex alloys. Appl. Phys. Lett. 106, p. 092101 (2015).
https://doi.org/10.1063/1.4913840
 
23.    W.R.L. Lambrecht, A.V. Rodina, S. Limpijumnong, B. Segall, and B.K. Meyer, Valence-band ordering and magneto-optic exciton fine structure in ZnO. Phys. Rev. B, 65, p. 075207 (2002).
https://doi.org/10.1103/PhysRevB.65.075207
 
24.    H. Yoshikawa, S. Adachi, Optical constants of ZnO. Jpn. J. Appl. Phys. 36, p. 6237 (1997).
https://doi.org/10.1143/JJAP.36.6237