Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N 2. P. 220-224.
DOI: https://doi.org/10.15407/spqeo19.02.220


References


1.    J. Judd, M.L. Ho, A. Tiwari et al., Tunable protease-activatable virus nanonodes. ACS Nano, 8(5), p. 4740-4746 (2014).
https://doi.org/10.1021/nn500550q
 
2.    S.D. Perrault and W.M. Shih, Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano, 8(5), p. 5132-5140 (2014).
https://doi.org/10.1021/nn5011914
 
3.    R.W.G. Wyckoff, Multiplication of the T3 bacteriophage against E. coli. Exp. Biol. Med. 71(1), p. 144-146 (1949).
https://doi.org/10.3181/00379727-71-17112P
 
4.    S. Matsuzaki, M. Rashel, J. Uchiyama et al., Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J. Infect. Chemotherapy, 11, p. 211-219 (2005).
https://doi.org/10.1007/s10156-005-0408-9
 
5.    C.E. Mire, J.B. Geisbert, K.N. Agans et al., Durability of a vesicular stomatitis virus-based marburg virus vaccine in nonhuman primates. PLoS One, 9(4), p. e94355 (2014).
https://doi.org/10.1371/journal.pone.0094355
 
6.    N.A. Mazurkova, Y.E. Spitsyna, N.V. Shikina, Z.R. Ismagilov, S.N. Zagrebel'nyi, and E.I. Ryabchikova, Interaction of titanium dioxide nanoparticles with influenza virus. Ross. Nanotekhnol. 5(5), p. 417-420 (2010).
https://doi.org/10.1134/S1995078010050174
 
7.    J.L. Elechiguerra, J.L. Burt, J.R. Morones, A. Camacho-Bragado et al., Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnology, 3(6), Article No. 6 (2005).
 
8.    H.H. Lara, N.V. Ayala-Nu-ez, L. Ixtepan-Turrent, C. Rodriguez-Padilla, Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnology, 8(1), Article No. 6 (2010).
 
9.    R.L. Hu, S.R. Li, F.J. Kong, R.J. Hou, X.L. Guan and F. Guo, Inhibition effect of silver nanoparticles on herpes simplex virus 2. Genetics and Molecular Research, 13(3), p. 7022-7028 (2014).
https://doi.org/10.4238/2014.March.19.2
 
10.    V. Lysenko, V. Lozovski, M. Spivak, Nanophysics and antiviral therapy. Ukr. J. Phys. 58(1), p. 77-90 (2013).
https://doi.org/10.15407/ujpe58.01.0077
 
11.    L. Lu, R.W.-Y. Sun, R. Chen et al., Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Therapy, 13, p. 253-262 (2008).
 
12.    Y. Luo, J. Qiu, Human parvovirus B19: a mechanistic overview of infection and DNA replication. Future Virology, 10(2), p. 155-167 (2015).
https://doi.org/10.2217/fvl.14.103
 
13.    D. R. Beniac, P. L. Melito, S. L. deVarennes et al., The organization of Ebola virus reveals a capacity for extensive, modular polyploidy. PLoS ONE, 7(1), p. e29608 (2012).
https://doi.org/10.1371/journal.pone.0029608
 
14.    D.H. Crowford, Viruses: A Very Short Introduction. Oxford University Press, Oxford, 2011.
https://doi.org/10.1093/actrade/9780199574858.001.0001
 
15.    J.D. Jackson, Classical Electrodynamics. 3-rd ed. John Wiley & Sons, New York, 1998.
 
16.    V. Lozovski, The effective susceptibility concept in the electrodynamics of nano-systems. J. Comput. and Theor. Nanosci. 7(1), p. 1-17 (2010).
https://doi.org/10.1166/jctn.2010.1588
 
17.    A.B. Evlyukhin, S.I. Bozhevolnyi, Surface plasmon polariton scattering by small ellipsoid particles. Surf. Sci. 590(2-3), p. 173-180 (2005).
https://doi.org/10.1016/j.susc.2005.06.010