Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017. V. 20, N 2. P. 185-190 (2017).


1.    Van der Waals J.D. Over de Continuiteit van den Gas- en Vloeistoftoestand (On the continuity of the gas and liquid state). Thesis, Leiden, 1873.
2.    Keesom W.H. The second viral coefficient for rigid spherical molecules, whose mutual attraction is equivalent to that of a quadruplet placed at their centre. Proc. R. Acad. Sci. Amsterdam. 1915. 18. P. 636–646.
3.    Keesom W.H. The quadrupole moments of the oxygen and nitrogen molecules. Proc. R. Acad. Sci. Amsterdam. 1920. 23. P. 939–942.
4.    Keesom W.H. Van der Waals attractive force. Phys. Z. 1921. 22. P. 129–141.
5.    Keesom W.H. Van der Waals attractive force. Phys. Z. 1921. 22. P. 643–644.
6.    Debye P. Van der Waals Cohesive Forces. Phys. Z. 1920. 21. P. 178–187.
7.    Debye P. Molekularkraefte und ihre Elektrische Deutung. Phys. Z. 1921. 22. P. 302–308.
8.    London F.Z. Zur Theorie und Systematik der Molekularkraefte. Phys. Z. 1930. 63. P. 245–279.
9.    Lifshitz E.M. The theory of molecular attractive forces between solids. Zhurnal Eksperiment. Teor Fiziki. 1955. 29. P. 94 (in Russian).
10.    Overbeek J.T.G. Electrokinetic Phenomena. In: Colloid Science, vol. I. H.R. Kruyt. Elsevier, Amsterdam, 1952.
11.    R. de Melo e Souza, Kort-Kamp W.J.M., Sigaud C., and Farina C. Image method in the calculation of the van der Waals force between an atom and a conducting surface. Am. J. Phys. 2013. 81, No. 5. P. 366–376.
12.    Genet C., Intravaia F., Lambrecht A. and Reynaud S. Electromagnetic vacuum fluctuations, Casimir and Van der Waals forces. Annales de la Fondation Louis de Broglie. 2004. 29, No. 1-2. P. 331–348.
13.    Bostrom M., Sernelius B., Brevik I. and Ninham B.W. Retardation turns the van der Waals attraction into a Casimir repulsion as close as 3 nm. Phys. Rev. A. 2012. 85, No. 1. P. 010701.
14.    Lamoreaux S.K. Demonstration of the Casimir force in the 0.6 to 6 mm range. Phys. Rev. Lett. 1997. 78, No. 1. P. 5–8.
15.    Eberlein C. and Zietal R. Polder interaction between a polarizable particle and a plate with a hole. Phys. Rev. A. 2011. 83. P. 052514.
16.    Hofer W.A., Foster A.S., Shluger A.L. Theories of scanning probe microscopes at the atomic scale. Rev. Mod. Phys. 2003. 75. P. 1301.
17.    McDermott M.T. and McCreery R.L. Scanning tun-neling microscopy of ordered graphite and glassy carbon surfaces: Electronic control of quinone adsorption. Langmuir. 1994. 10. P. 4307–4314.
18.    Simonis P., Goffaux C., Thiry P.A., Biro L.P., Lam-bin Ph., Meunier V. STM study of a grain boun¬dary in graphite. Surf. Sci. 2002. 511. P. 319–322.
19.    Kubota S., Yonezawa T., Nagahama T., and Shimada T. Change in the morphology of the terrace edges on graphite surfaces by electrochemical reduction. Chem. Lett. 2012. 41, No. 2. P. 187–188.
20.    Banks C.E. and Compton R.G. New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. Analyst. 2006. 131. P. 15–21.
21.    Eberlein C. and Zietal R. Force on a neutral atom near conducting microstructures. Phys. Rev. A. 2007. 75. P. 032516.
22.    Banerjee S., Sardar M., Gayathri N., Tyagi A.K., and Raj B. Conductivity landscape of highly oriented pyrolytic graphite surfaces containing ribbons and edges. Phys. Rev. B. 2005. 72. P. 075418.
23.    Sommerhalter Ch., Matthes Th.W., Glatzel Th., Jager-Waldau A., and Lux-Steiner M.Ch. High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy. Appl. Phys. Lett. 1999. 75. P. 286.