Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017. V. 20, N 2. P. 240-245 (2017).
DOI: https://doi.org/10.15407/spqeo20.02.240


References

1.    Zhang X., Whitney A.V., Zhao J., Hicks E.M., and Van Duyne R.P. Advances in contemporary nanosphere lithographic techniques. J. Nanosci. Nanotechnol. 2006. 6. P. 1–15.
https://doi.org/10.1166/jnn.2006.322
 
2.    Ye X., Qi L. Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications. Nano Today. 2011. 6. P. 608–631.
https://doi.org/10.1016/j.nantod.2011.10.002
 
3.    Colson P., Henrist C., and Cloots R. Nanosphere lithography: A powerful method for the controlled manufacturing of nanomaterials. J. Nanomater. 2013. 2013. P. 1–19.
 
4.    Haynes C.L. and Van Duyne R.P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B. 2001. 105. P. 5599–5611.
https://doi.org/10.1021/jp010657m
 
5.    Baia L., Baia M., Popp J., Astilean S. Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR. J. Phys. Chem. B. 2006. 110, No. 47. P. 23982–23986.
https://doi.org/10.1021/jp064458k
 
6.    Fracau C., Canpean V., Gabor M., Petrisor T., Astilean S. Periodically nanostructured noble-metal thin films with enhanced optical properties. J. Optoelectron. Adv. Mater. 2008. 10, No. 4. P. 809–812.
 
7.    Choi D.-G., Yu H.K., Jang S.G., and Yang S.-M. Colloidal lithographic nanopatterning via reactive ion etching. J. Am. Chem. Soc. 2004. 126. P. 7019–7025.
https://doi.org/10.1021/ja0319083
 
8.    Zhang Y., Wang X., Wang Y., Liu H., Yang J. Ordered nanostructures array fabricated by nanosphere lithography. J. Alloys and Compounds. 2008. 452. P. 473–477.
https://doi.org/10.1016/j.jallcom.2007.11.021
 
9.    Atkinson A.L., McMahon J.M., and Schatz G.C. FDTD Studies of Metallic Nanoparticle Systems. In: Self-Organization of Molecular Systems: From Molecules and Clusters to Nanotubes and Proteins. Eds. N. Russo, V.Y. Antonchenko, E.S. Kryachko. NATO Science for Peace and Security, Series A: Chemistry and Biology. Springer Science, Dodrecht, 2009. P. 11–32.
https://doi.org/10.1007/978-90-481-2590-6_2
 
10.    Xiaodong Zhou and Nan Zhang, Profile controlled gold nanostructures fabricated by nanosphere lithography for localized surface plasmon resonance. World Academy of Science, Engineering and Technology. 2010. 68. P. 794–800.
 
11.    Kelly K.L., Coronado E., Zhao L., Schatz G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B. 2003. 107. P. 668–677.
https://doi.org/10.1021/jp026731y
 
12.    Payne E.K., Shuford K.L., Park S., Schatz G.C., and Mirkin C.A. Multipole plasmon resonances in gold nanorods. J. Phys. Chem. B. 2006. 110, No. 5. P. 2150–2154.
https://doi.org/10.1021/jp056606x
 
13.    Henson J., DiMaria J., and Paiella R. Influence of nanoparticle height on plasmonic resonance wavelength and electromagnetic field enhancement in two-dimensional arrays. J. Appl. Phys. 2009. 106. P. 093111.
https://doi.org/10.1063/1.3255979
 
14.    Rechberger W., Hohenau A., Leitner A., Krenn J.R., Lamprecht B., Aussenegg F.R. Optical properties of two interacting gold nanoparticles. Optics Communs. 2003. 220. P. 137–141.
https://doi.org/10.1016/S0030-4018(03)01357-9
 
15.    Su K.-H., Wei Q.-H., Zhang X., Mock J.J., Smith D.R., Schultz S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 2003. 3. P. 1087–1090.
https://doi.org/10.1021/nl034197f1.