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1. Introduction

Semiconductors with defects were a subject of intense 
researches as early as 1940s [1]. Later development of 
semiconductor physics and technology allowed creating 
the close to perfect defect-free materials and devices, 
including diodes [2]. However, with increasing ability to 
make nano-sized diodes, processes at surfaces of 
interfaces became more influential. The presence of 
traps in semiconductors contributes to different physical 
phenomena. Unlike defect-free semiconductors, which 
have quadratic current-bias characteristic [3], diodes 
with defects exhibit slow rise of current until critical 
voltage is reached, and power-law rise after critical 
voltage [4]. The presence of dopants in regions with 
traps also has a large effect on currents in semiconductor 
devices [5]. Dopants together with the Frenkel effect 
also control shape of the current-voltage characteristics 
[6]. Another effect that is introduced by traps in 
semiconductor devices are noise sources caused by 
random trapping and detrapping of charge carriers (see 
[7] for bulklike samples and [8] for nanowires/nano-
ribbons). The surface noise can be considerably sup-
pressed due to Coulomb correlations between trapped 
and conducting electrons [9].

In this work, we calculate the current-bias 
characteristics alongside distributions of the field, 
potential and concentrations of free and trapped carriers 
in the short diode with dopants and traps. We employ the 
phase-plane method [10] that allows to make qualitative 
conclusions on transport in the short diode. We include 
in the model a finite-length base and infinite contacts 
with higher doping concentration. Numerical 
calculations were performed using the numerical 
methods in general case, but analytical approximations 
were also used for low and high injection modes.

2. Steady-state transport model and main equations

The Poisson equation describes the field change in the 
base
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where E is the field, n, N are electron density of free 
charges and charges captured by traps, Nb, Nc – dopant 
concentrations in the base and contacts, x is the 
coordinate, e0 – positive electron charge, , 0 are the 
relative and vacuum permeabilities.

For the density change, we consider continuity 
equations for base with generation and recombination of 
free particles
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In the case of contact, generation and 
recombination terms are absent:
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  is the charge flow equal to current 

density divided by electron charge, 

 NNnRNG t   =,=  are the generation and re-

combination terms, Nt is the density of traps, +, – are 
coefficients.

For the stationary problem, the time derivatives 
disappear, and we obtain the Poisson equations (1), (2) 
and constant current density that can be defined using 
the drift-diffusion equation
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where D is the diffusion coefficient, μ – mobility.
Diffusion can be expressed through mobility 
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for the drift-diffusion equation (6) throughout the diode. 
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3. General case: the phase-plane analysis

We transform dimensionless equations (8), (10) into the 
field-concentration differential equation
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which we can analyze using calculated separatrix 
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and such properties as: the null derivative on n = Ncrt

line, infinity derivative at 
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Similar and simpler equations (no traps, hence 
terms with Nt and  disappear) can be written for 
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equations describing movement of the charged particle 
in the contact.

Examples of phase planes are shown in Figs 1, 2 
and 3. All of them show relation of field (vertical axis) 
and concentration (horizontal axis). Phase planes 
shown in Fig. 1 describe all possible field and 
concentration relations in the base and contact of 
semiconductor, with all possible boundary conditions. 
For instance, darker trajectories in the phase plane with 
the critical point Ncrt correspond to any concentration-
field relations inside base (trajectories have lower 
concentration inside the base, and higher concentration 
at interfaces; and field is constantly decreased). 
Likewise, darker trajectories in the phase plane with 
the critical point Nc correspond to relations in the 
contact (maximum of the concentration for particular 
trajectory can be taken as starting and ending points, 
with the concentration decreasing in cathode, and rising 
in anode; and field growing in both contacts). It should 
be noted that different intersections of darker 
trajectories from those phase planes depict all solutions 
to equations (8)-(10) in conditions of equal stronger 
doped contacts and weaker doped base. When moving 
along the particular line on the phase plane, one can 
determine the distance between two points by 
integrating the equation (10), for example. Movement 

from or to critical point 
crt

crt N

j
N ,  (along any of the 

separatrix) gives infinite distance, which can be used to 
model infinitely large contacts, as in our case.

Fig. 2 shows few integral paths for the base and 
separatrix for the contact. A solution to the system of 
equations (8)-(10) should start in the critical point for 

contact 








c
c N

j
N , , then moving along separatrix one 

reaches the field maximum at the left interface, then 
moving along the path integral for the base to the right 
interface and then again one reaches the critical point in 
the contact by using different separatrix.

j
N c r t

j
N c

Ncr t Nc

left
interface

right
interface

Fig. 2. Solutions for both the contact and base are shown on
the same phase plane. Solid line shows separatrices for the 
contact, dashed – integral paths for different intercontact 
distances; both critical points for the base and contact lie on the 

dotted line 
n

j
. The top intersection point of separatrix and 

integral path represent the left interface of diode, bottom –
right interface.

0

Ncr t Nc

Fig. 3. Phase plane for diode without injection. Dotted line is 
the separatrix for the base, dashed – for the contact, and solid 
lines represent solutions for the base. Unlike previous Figs 1 
and 2, these lines can be built analytically.

j
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Fig. 1. Phase planes. Solid lines represent separatrix guidelines, dashed – characteristic lines. Four regions where the phase plane 
is divided by the separatrix define different behaviour of Eq. (11).
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4. Equilibrium distributions in the unbiased diode

In the absence of current, equations (8)-(10) can be 
solved analytically. The field-concentration dependence 
can be written as

,loglog2=
min
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for the base and contact, respectively. Nmin defines the 
minimum concentration in the base.

A dependence of the concentration on the coordi-
nate can be found from the integral expression
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The equations give the expected result ( Fig. 3): 
symmetrical distribution of charged particles concen-
tration and the potential in diode, as well as the asym-
metrical field distribution. 

5. Regime of low injection

We consider a low current in the diode. In this case, we 

can expect a solution in the form 
*10=

N

j
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n = n0 = n1, where E0, n0 denote unbiased solutions, 

1*1 , n
N

j
E  – corrections for low injection. N* is the 

dopant concentration Nc in the case of contact and the 
minimum concentration Nmin in the case of base. 
Correction for the field is split by two terms for 
convenience – it requires E1 term to be equal to zero in 
the N* point.

Solving the equations (8)-(10) simplified to the first 
order in respect to E1, n1 and current density j, we get
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for the contact.

6. Regime of high injection under virtual cathode 
approximation

Under the high current, we can neglect the diffusion 

term 
x

n

d

d
 in (10), and equations become solvable in 

respect to coordinate x
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for the cathode and anode, respectively. Nc denotes 
another critical point for the equation (11) with the 
negative value, Ec, xc  are the field and coordinate at the 
interface between the base and anode.

Since Eq. (10) without diffusion gives the simple 

field-concentration dependence 
n

j
E = , all the integral 

paths lay on the same line in the phase plane. Because of 
it, we can’t use intersections of integral paths correspon-
ding to the base and contact to determine the values of 
field and concentration at the interface. Hence, we 
should use virtual cathode approximation that puts the 

field maximum 0=
d

d

x

U
 for x = 0 at the interface bet-

ween the cathode and base. This approximation requires 
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the current density to be greater than not only diffusion 
term, but also doping concentration of the contact Nc.

See Fig. 4 for comparison between numerical 
results and approximations for high and low injection.

7. General case of arbitrary injection. 
Numerical results

To solve equations (8)-(10) in general case, we will use 
the Runge–Kutta method. Plotting the integral paths for 
the base and contact, then we intersect them to determine 
interface values of field and concentration along with 
base width. By manipulating the minimal concentration 
in the base Nmin, we can change the width of base, and 
get it to the predefined value. After calculating basic 
relations for the field, concentrations of free and trapped 
charged particles, we can calculate and plot the potential 
of the diode at various current densities.

As a result, we get the expected shift of the 
concentration plot in direction to the anode with 
increasing injection, as seen in the inlet of Fig. 5.

The above analysis was done in dimensionless 
variables. To apply these results to particular diodes, we 
present the normalization parameters in the table below. 
Values for InAs at 77 K are not included, since the 
calculated mean free path (Lfp) was comparable to 
intercontact distance, which does not satisfy our model. 
All the values are in SI units, except Lfp, which is 
dimensionless. Values for mobility and other 
characteristics of materials were taken from different 
articles [11-14] and books [15, 16].

Fig. 6 depicts the dependence current-voltage on 
the trap concentration in the base. A higher potential for 
the same level of injection can be required with 
increasing the concentration of traps. This shift to higher 
voltages can be explained by trapped injected carriers 
that generate push-back voltage until all the traps are 
filled, at which point the current sharply rises [6]. Our 
model doesn’t accommodate for breakdown field, but if 
we take Si as example, its breakdown voltage would lie 
near 240 V, and Fig. 6 goes only to 12 V.

T, K
3

1
,

m
N ch Lfp Ld, m

m

V
Ed ,

2
,
m

A
jch Uch, V

Si 300 1020 0.2 4.110–07 6104 105 0.03

Si 77 1020 1.7 2.110–07 3104 6105 0.007

Ge 300 1020 0.4 4.810–07 5104 3105 0.03

Ge 77 1020 2.8 2.410–07 3104 106 0.007

InAs 300 1022 4.9 4.710–08 6105 2109 0.03

GaAs 300 1021 1.1 1.410–07 2105 2107 0.03

GaAs 77 1021 2.0 6.910–08 1105 3107 0.007

GaN 300 1020 3.2 3.610–07 7104 5106 0.03

GaN 77 1020 0.8 1.810–07 4104 6105 0.007
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Fig. 4. Comparison of approximation and numerical calculation. Solid line denotes the numerical result, dashed line – approxi-
mation for small injection and high injection, respectively.
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Fig. 6. Current-voltage characteristics. Solid line calculated 
according to Gurney–Mott law, dashed – numerical results for 
different concentrations of trapped charges. Nt = 0, 0.5, 1, 1.5, 
2, 2.5, 3 from shorter dashed lines to the longer ones, 
respectively.

8. Conclusion

The introduced model is viable for both analytical and 
numerical analysis. The phase-plane analysis gives 
general prediction of numerical results for concentration 
and field change inside the diode. From these results, we 
can see the dependence of current-bias characteristic 
from traps concentration in the base, with a linear 
characteristic corresponding to the concentration of traps 
being smaller than the dopant one, and a power like 
characteristic for traps concentrations higher than that of 
dopant, which shifts further to higher voltages with 
increasing the traps concentration, due to push-back 
voltage generated by trapped injected carriers.
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1. Introduction


Semiconductors with defects were a subject of intense researches as early as 1940s [1]. Later development of semiconductor physics and technology allowed creating the close to perfect defect-free materials and devices, including diodes [2]. However, with increasing ability to make nano-sized diodes, processes at surfaces of interfaces became more influential. The presence of traps in semiconductors contributes to different physical phenomena. Unlike defect-free semiconductors, which have quadratic current-bias characteristic [3], diodes with defects exhibit slow rise of current until critical voltage is reached, and power-law rise after critical voltage [4]. The presence of dopants in regions with traps also has a large effect on currents in semiconductor devices [5]. Dopants together with the Frenkel effect also control shape of the current-voltage characteristics [6]. Another effect that is introduced by traps in semiconductor devices are noise sources caused by random trapping and detrapping of charge carriers (see [7] for bulklike samples and [8] for nanowires/nanoribbons). The surface noise can be considerably suppressed due to Coulomb correlations between trapped and conducting electrons [9].


In this work, we calculate the current-bias characteristics alongside distributions of the field, potential and concentrations of free and trapped carriers in the short diode with dopants and traps. We employ the phase-plane method [10] that allows to make qualitative conclusions on transport in the short diode. We include in the model a finite-length base and infinite contacts with higher doping concentration. Numerical calculations were performed using the numerical methods in general case, but analytical approximations were also used for low and high injection modes.


2. Steady-state transport model and main equations


The Poisson equation describes the field change in the base
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where E is the field, n, N are electron density of free charges and charges captured by traps, Nb, Nc – dopant concentrations in the base and contacts, x is the coordinate, e0 – positive electron charge, (, (0 are the relative and vacuum permeabilities.


For the density change, we consider continuity equations for base with generation and recombination of free particles
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In the case of contact, generation and recombination terms are absent:
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 is the charge flow equal to current density divided by electron charge, 
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For the stationary problem, the time derivatives disappear, and we obtain the Poisson equations (1), (2) and constant current density that can be defined using the drift-diffusion equation
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where D is the diffusion coefficient, μ – mobility.


Diffusion can be expressed through mobility 
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Dimensionless equations look like
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for field in the base,
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for field in the contacts and
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for the drift-diffusion equation (6) throughout the diode. The parameter 
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3. General case: the phase-plane analysis


We transform dimensionless equations (8), (10) into the field-concentration differential equation
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which we can analyze using calculated separatrix guidelines:
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and such properties as: the null derivative on n = Ncrt line, infinity derivative at 
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Similar and simpler equations (no traps, hence terms with Nt and ( disappear) can be written for equations describing movement of the charged particle in the contact.
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Examples of phase planes are shown in Figs 1, 2 and 3. All of them show relation of field (vertical axis) and concentration (horizontal axis). Phase planes shown in Fig. 1 describe all possible field and concentration relations in the base and contact of semiconductor, with all possible boundary conditions. For instance, darker trajectories in the phase plane with the critical point Ncrt correspond to any concentration-field relations inside base (trajectories have lower concentration inside the base, and higher concentration at interfaces; and field is constantly decreased). Likewise, darker trajectories in the phase plane with the critical point Nc correspond to relations in the contact (maximum of the concentration for particular trajectory can be taken as starting and ending points, with the concentration decreasing in cathode, and rising in anode; and field growing in both contacts). It should be noted that different intersections of darker trajectories from those phase planes depict all solutions to equations (8)-(10) in conditions of equal stronger doped contacts and weaker doped base. When moving along the particular line on the phase plane, one can determine the distance between two points by integrating the equation (10), for example. Movement from or to critical point 
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 (along any of the separatrix) gives infinite distance, which can be used to model infinitely large contacts, as in our case.


Fig. 2 shows few integral paths for the base and separatrix for the contact. A solution to the system of equations (8)-(10) should start in the critical point for contact 

[image: image24.wmf]÷


÷


ø


ö


ç


ç


è


æ


c


c


N


j


N


,


, then moving along separatrix one reaches the field maximum at the left interface, then moving along the path integral for the base to the right interface and then again one reaches the critical point in the contact by using different separatrix.
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Fig. 2. Solutions for both the contact and base are shown on the same phase plane. Solid line shows separatrices for the contact, dashed – integral paths for different intercontact distances; both critical points for the base and contact lie on the dotted line 
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Fig. 3. Phase plane for diode without injection. Dotted line is the separatrix for the base, dashed – for the contact, and solid lines represent solutions for the base. Unlike previous Figs 1 and 2, these lines can be built analytically.

4. Equilibrium distributions in the unbiased diode


In the absence of current, equations (8)-(10) can be solved analytically. The field-concentration dependence can be written as
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for the base and contact, respectively. Nmin defines the minimum concentration in the base.


A dependence of the concentration on the coordinate can be found from the integral expression
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The equations give the expected result ( Fig. 3): symmetrical distribution of charged particles concentration and the potential in diode, as well as the asymmetrical field distribution. 

5. Regime of low injection


We consider a low current in the diode. In this case, we can expect a solution in the form 
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 – corrections for low injection. N* is the dopant concentration Nc in the case of contact and the minimum concentration Nmin in the case of base. Correction for the field is split by two terms for convenience – it requires E1 term to be equal to zero in the N* point.


Solving the equations (8)-(10) simplified to the first order in respect to E1, n1 and current density j, we get
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where
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for the base, and
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for the contact.


6. Regime of high injection under virtual cathode approximation


Under the high current, we can neglect the diffusion term 
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[image: image40.wmf](


)


(


)


(


)


÷


÷


ø


ö


ç


ç


è


æ


k


+


-


k


-


k


-


ç


ç


è


æ


-


÷


÷


ø


ö


ç


ç


è


æ


k


+


-


k


-


k


´


´


-


k


+


crt


b


crt


t


crt


b


b


t


b


crt


b


b


N


N


j


E


N


N


N


N


N


N


j


E


N


N


N


N


N


N


N


j


N


E


x


1


og


l


1


og


l


=


2


2


2


2


2



 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (23)


for the base and
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for the cathode and anode, respectively. Nc denotes another critical point for the equation (11) with the negative value, Ec, xc  are the field and coordinate at the interface between the base and anode.


Since Eq. (10) without diffusion gives the simple field-concentration dependence 
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, all the integral paths lay on the same line in the phase plane. Because of it, we can’t use intersections of integral paths corresponding to the base and contact to determine the values of field and concentration at the interface. Hence, we should use virtual cathode approximation that puts the field maximum 
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See Fig. 4 for comparison between numerical results and approximations for high and low injection.


7. General case of arbitrary injection. 
Numerical results


To solve equations (8)-(10) in general case, we will use the Runge–Kutta method. Plotting the integral paths for the base and contact, then we intersect them to determine interface values of field and concentration along with base width. By manipulating the minimal concentration in the base Nmin, we can change the width of base, and get it to the predefined value. After calculating basic relations for the field, concentrations of free and trapped charged particles, we can calculate and plot the potential of the diode at various current densities.


As a result, we get the expected shift of the concentration plot in direction to the anode with increasing injection, as seen in the inlet of Fig. 5.



The above analysis was done in dimensionless variables. To apply these results to particular diodes, we present the normalization parameters in the table below. Values for InAs at 77 K are not included, since the calculated mean free path (Lfp) was comparable to intercontact distance, which does not satisfy our model. All the values are in SI units, except Lfp, which is dimensionless. Values for mobility and other characteristics of materials were taken from different articles [11-14] and books [15, 16].


Fig. 6 depicts the dependence current-voltage on the trap concentration in the base. A higher potential for the same level of injection can be required with increasing the concentration of traps. This shift to higher voltages can be explained by trapped injected carriers that generate push-back voltage until all the traps are filled, at which point the current sharply rises [6]. Our model doesn’t accommodate for breakdown field, but if we take Si as example, its breakdown voltage would lie near 240 V, and Fig. 6 goes only to 12 V.
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Fig. 6. Current-voltage characteristics. Solid line calculated according to Gurney–Mott law, dashed – numerical results for different concentrations of trapped charges. Nt = 0, 0.5, 1, 1.5, 2, 2.5, 3 from shorter dashed lines to the longer ones, respectively.

8. Conclusion


The introduced model is viable for both analytical and numerical analysis. The phase-plane analysis gives general prediction of numerical results for concentration and field change inside the diode. From these results, we can see the dependence of current-bias characteristic from traps concentration in the base, with a linear characteristic corresponding to the concentration of traps being smaller than the dopant one, and a power like characteristic for traps concentrations higher than that of dopant, which shifts further to higher voltages with increasing the traps concentration, due to push-back voltage generated by trapped injected carriers.
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Fig. � SEQ Figure \* ARABIC �1�. Phase planes. Solid lines represent separatrix guidelines, dashed – characteristic lines. Four regions where the phase plane is divided by the separatrix define different behaviour of Eq. (11).
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Fig. 4. Comparison of approximation and numerical calculation. Solid line denotes the numerical result, dashed line – approxi�mation for small injection and high injection, respectively.
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Fig. 5. Concentrations of free (n) and trapped (N) particles, field (E) and potential (U) through diode, for different current density. Legend for current density on potential graph applies to all others as well. Left and right interfaces located at the coordinate values 0 and 20, respectfully. Inside free particles graph, the inset scales up the version of right interface. For example, for particular case of Si, at room temperature, width of the base would be �EMBED Equation.3���, current density would be scaled from 10 to �EMBED Equation.3���, and maximum potential drop would be 9 V.
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