Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (2) P. 139-151 (2018).
DOI: https://doi.org/10.15407/spqeo21.02.139


References

1. Spaldin N.A., Fiebig M. The renaissance of magnetoelectric multiferroics. Science. 2005. 309. P. 391. (https://doi.org/10.1126/science.1113357)
https://doi.org/10.1126/science.1113357
 
2. Ramesh R., Spaldin N.A. Multiferroics: progress and prospects in thin films. Nature Materials. 2007. 6, No 1. P. 21–29. 
https://doi.org/10.1038/nmat1805
 
3. Aizu K. Possible species of "ferroelastic" crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn. 1969. 27, No 2. P. 387–396.
https://doi.org/10.1143/JPSJ.27.387
 
4. Aizu K. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B. 1970. 2, No 3. P. 754 
https://doi.org/10.1103/PhysRevB.2.754
 
5. Morozovska A.N. On state-of-the-art and perspectives for development of ferroics physics in Ukraine Herald of NAS of Ukraine. 2018. N2. C. 42–52
 
6. Kim Y.-M., Kumar A., Hatt A., Morozovska A.N., Tselev A., Biegalski M.D., Ivanov I., Eliseev E.A., Pennycook S.J., Rondinelli J.M., Kalinin S.V., Borisevich A.Y. Interplay of octahedral tilts and polar order in BiFeO3 films. Adv. Mater. 2013. 25. P. 2497–2504.
https://doi.org/10.1002/adma.201204584
 
7. Morozovska A.N., Khist V.V., Glinchuk M.D., Gopalan V., Eliseev E.A. Linear antiferrodistortiveantiferromagnetic effect in multiferroics: physical manifestations. Phys. Rev. B. 2015. 92. P. 054421.
https://doi.org/10.1103/PhysRevB.92.054421
 
8. Pyatakov A.P., Zvezdin A.K. Magnetoelectric and multiferroic media. Physics–Uspekhi. 2012. 55, No 6. P. 557–581.
https://doi.org/10.3367/UFNe.0182.201206b.0593
 
9. Karpinsky D.V., Eliseev E.A., Xue Fei, Silibin M.V., Franz A., Glinchuk M.D., Troyanchuk I.O., Gavrilov S.A., Gopalan V., Long-Qing Chen, and Morozovska A.N. A comprehensive thermodynamic potential and phase diagram for multiferroic bismuth ferrite. Computational Materials. 2017. 3. P. 20.
https://doi.org/10.1038/s41524-017-0021-3
 
10. Glinchuk M.D., Eliseev E.A., Morozovska A.N., Blinc R. Giant magnetoelectric effect induced by intrinsic surface stress in ferroic nanorods. Phys. Rev. B. 2008. 77, No 2. P. 024106-1–11.
https://doi.org/10.1103/PhysRevB.77.024106
 
11. Morozovska A.N. and Glinchuk M.D. Reentrant phase in nanoferroics induced by the flexoelectric and Vegard effects. J. Appl. Phys. 2016. 119. P. 094109.
https://doi.org/10.1063/1.4942859
 
12. Eliseev E.A., Vorotiahin I.S., Fomichov Ye.M., Glinchuk M.D., Kalinin S.V., Genenko Yu.A., and Morozovska A.N. Defect driven flexo-chemical coupling in thin ferroelectric films. (Accepted to Physical Review B)
 
13. Eliseev E.A., Morozovska A.N., Glinchuk M.D., Blinc R. Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B. 2009. 79, No 16. P. 165433-1–10.
https://doi.org/10.1103/PhysRevB.79.165433
 
14. Zubko P., Catalan G., Tagantsev A.K. Flexoelectric effect in solids. Ann. Rev. Mater. Res. 2013. 43. P. 387–421.
https://doi.org/10.1146/annurev-matsci-071312-121634
 
15. Freedman D.A., Roundy D., and Arias T.A. Elastic effects of vacancies in strontium titanate: Short-and long-range strain fields, elastic dipole tensors, and chemical strain. Phys. Rev. B. 2009. 80. P. 064108.
https://doi.org/10.1103/PhysRevB.80.064108
 
16. Jinlong Zhu, Wei Han, Hui Zhang, Zhen Yuan, Xiaohui Wang, Longtu Li, and Changqin Jin. Phase coexistence evolution of nano BaTiO3 as function of particle sizes and temperatures. J. Appl. Phys. 2012. 112. P. 064110.
https://doi.org/10.1063/1.4751332
 
17. Eliseev E.A., Morozovska A.N., Glinchuk M.D., and Kalinin S.V. Missed surface waves in nonpiezoelectric solids. Phys. Rev. B. 2017. 96, No.4. P. 045411.
https://doi.org/10.1103/PhysRevB.96.045411
 
18. Morozovska A.N., Vysochanskii Yu.M., Varenik O.V., Silibin M.V., Kalinin S.V., and Eliseev E.A. Flexocoupling impact on the generalized susceptibility and soft phonon modes in the ordered phase of ferroics. Phys. Rev. B. 2015. 92, No 9. P. 094308.
https://doi.org/10.1103/PhysRevB.92.094308
 
19. Morozovska A.N., Eliseev E.A., Scherbakov Ch.M., and Vysochanskii Yu.M. The influence of elastic strain gradient on the upper limit of flexocoupling strength, spatially-modulated phases and soft phonon dispersion in ferroics. Phys. Rev. B. 2016. 94. P. 174112.
https://doi.org/10.1103/PhysRevB.94.174112
 
20. Morozovska A.N., Glinchuk M.D., Eliseev E.A., and Vysochanskii Yu.M. Flexocoupling-induced soft acoustic mode and the spatially modulated phases in ferroelectrics. Phys. Rev. B. 2017. 96. P. 094111.
https://doi.org/10.1103/PhysRevB.96.094111
 
21. Hlinka J., Quilichini M., Currat R., and Legrand J.F. Dynamical properties of the normal phase of betaine calcium chloride dihydrate. I. Experimental results. J. Phys.: Condens. Matter. 1996. 8, No 43. P. 8207.
https://doi.org/10.1088/0953-8984/8/43/016
 
22. Eliseev E.A., Vorotiahin I.S., Fomichov Ye.M., Glinchuk M.D., Kalinin S.V., Genenko Yu.A., and Morozovska A.N. Defect driven flexo-chemical coupling in thin ferroelectric films. Phys. Rev. B. 2018. 97. P. 024102.
https://doi.org/10.1103/PhysRevB.97.024102
 
23. Tagantsev A.K. and Gerra G. Interface-induced phenomena in polarization response of ferroelectric thin films. J. Appl. Phys. 2006. 100. P. 051607.
https://doi.org/10.1063/1.2337009
 
24. Eliseev E.A., Morozovska A.N., Glinchuk M.D., and Blinc R. Spontaneous flexoelectric / flexomagnetic effect in nanoferroics. Phys. Rev. B. 2009. 79, No 16. P. 165433-1-10.
https://doi.org/10.1103/PhysRevB.79.165433
 
25. Yudin P.V., Ahluwalia R., Tagantsev A.K. Upper bounds for flexocoupling coefficients in ferroelectrics. Appl. Phys. Lett. 2014. 104, No 8. P. 082913.
https://doi.org/10.1063/1.4865208
 
26. Yudin P.V., Ahluwalia R., Tagantsev A.K. Upper bounds for flexocoupling coefficients in ferroelectrics. Appl. Phys. Lett. 2014. 104. P. 082913.
https://doi.org/10.1063/1.4865208
 
27. Morozovska A.N., Eliseev E.A., Scherbakov C.M., and Vysochanskii Y.M. The influence of elastic strain gradient on the upper limit of flexocoupling strength, spatially-modulated phases and soft phonon dispersion in ferroics. Phys. Rev. B. 2016. 94. P. 174112.
https://doi.org/10.1103/PhysRevB.94.174112
 
28. Wang J., Tagantsev A.K., and Setter N. Size effect in ferroelectrics: Competition between geometrical and crystalline symmetries. Phys. Rev. B. 2011. 83, No 1. P. 014104.
https://doi.org/10.1103/PhysRevB.83.014104
 
29. Maranganti R. and Sharma P. A novel atomistic approach to determination of strain-gradient elasticity constants: Tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies. J. Mech. Phys. Solids. 2007. 55. P. 1823.
https://doi.org/10.1016/j.jmps.2007.02.011
 
30. Yurkov A.S. Elastic boundary conditions in the presence of the flexoelectric effect. JETP Lett. 2011. 94, No 6. P. 455.
https://doi.org/10.1134/S0021364011180160
 
31. Flexoelectricity in Solids: From Theory to Applications. Ed. by A.K. Tagantsev and P.V. Yudin. World Scientific, 2016 and Refs. therein.
 
32. Yudin P.V., Tagantsev A.K., Eliseev E.A., Morozovska A.N. and Setter N. Bichiral structure of ferroelectric domain walls driven by flexoelectricity. Phys. Rev. B. 2012. 86. P. 134102.
https://doi.org/10.1103/PhysRevB.86.134102
 
33. Eliseev E.A., Yudin P.V., Kalinin S.V., Setter N., Tagantsev A.K. and Morozovska A.N. Structural phase transitions and electronic phenomena at 180-degree domain walls in rhombohedral BaTiO3.Phys. Rev. B. 2013. 87. P. 054111.
https://doi.org/10.1103/PhysRevB.87.054111
 
34. Exactly these conditions correspond to the minimum of the Gibbs potential, see §10 in: L.D. Landau and E.M. Lifshitz, Theoretical Physics, Electrodynamics of Continuous Media, Vol. VIII. Pergamon, Oxford, 1963.
 
35. Sheldon B.W., Shenoy V.B. Space charge induced surface stresses: implications in ceria and other ionic solids. Phys. Rev. Lett. 2011. 106. P. 216104.
https://doi.org/10.1103/PhysRevLett.106.216104