1. Spaldin N.A., Fiebig M. The
renaissance of magnetoelectric multiferroics. Science. 2005. 309. P.
391. (https://doi.org/10.1126/science.1113357) https://doi.org/10.1126/science.1113357
2. Ramesh R., Spaldin N.A. Multiferroics: progress and prospects in thin films. Nature Materials. 2007. 6, No 1. P. 21–29. https://doi.org/10.1038/nmat1805
3.
Aizu K. Possible species of "ferroelastic" crystals and of
simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc.
Jpn. 1969. 27, No 2. P. 387–396. https://doi.org/10.1143/JPSJ.27.387
4.
Aizu K. Possible species of ferromagnetic, ferroelectric, and
ferroelastic crystals. Phys. Rev. B. 1970. 2, No 3. P. 754 https://doi.org/10.1103/PhysRevB.2.754
5.
Morozovska A.N. On state-of-the-art and perspectives for development of
ferroics physics in Ukraine Herald of NAS of Ukraine. 2018. N2. C. 42–52
6.
Kim Y.-M., Kumar A., Hatt A., Morozovska A.N., Tselev A., Biegalski
M.D., Ivanov I., Eliseev E.A., Pennycook S.J., Rondinelli J.M., Kalinin
S.V., Borisevich A.Y. Interplay of octahedral tilts and polar order in
BiFeO3 films. Adv. Mater. 2013. 25. P. 2497–2504. https://doi.org/10.1002/adma.201204584
7.
Morozovska A.N., Khist V.V., Glinchuk M.D., Gopalan V., Eliseev E.A.
Linear antiferrodistortiveantiferromagnetic effect in multiferroics:
physical manifestations. Phys. Rev. B. 2015. 92. P. 054421. https://doi.org/10.1103/PhysRevB.92.054421
9.
Karpinsky D.V., Eliseev E.A., Xue Fei, Silibin M.V., Franz A., Glinchuk
M.D., Troyanchuk I.O., Gavrilov S.A., Gopalan V., Long-Qing Chen, and
Morozovska A.N. A comprehensive thermodynamic potential and phase
diagram for multiferroic bismuth ferrite. Computational Materials.
2017. 3. P. 20. https://doi.org/10.1038/s41524-017-0021-3
10.
Glinchuk M.D., Eliseev E.A., Morozovska A.N., Blinc R. Giant
magnetoelectric effect induced by intrinsic surface stress in ferroic
nanorods. Phys. Rev. B. 2008. 77, No 2. P. 024106-1–11. https://doi.org/10.1103/PhysRevB.77.024106
11.
Morozovska A.N. and Glinchuk M.D. Reentrant phase in nanoferroics
induced by the flexoelectric and Vegard effects. J. Appl. Phys. 2016.
119. P. 094109. https://doi.org/10.1063/1.4942859
12.
Eliseev E.A., Vorotiahin I.S., Fomichov Ye.M., Glinchuk M.D., Kalinin
S.V., Genenko Yu.A., and Morozovska A.N. Defect driven flexo-chemical
coupling in thin ferroelectric films. (Accepted to Physical Review B)
13.
Eliseev E.A., Morozovska A.N., Glinchuk M.D., Blinc R. Spontaneous
flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B. 2009.
79, No 16. P. 165433-1–10. https://doi.org/10.1103/PhysRevB.79.165433
15.
Freedman D.A., Roundy D., and Arias T.A. Elastic effects of vacancies
in strontium titanate: Short-and long-range strain fields, elastic
dipole tensors, and chemical strain. Phys. Rev. B. 2009. 80. P. 064108. https://doi.org/10.1103/PhysRevB.80.064108
16.
Jinlong Zhu, Wei Han, Hui Zhang, Zhen Yuan, Xiaohui Wang, Longtu Li,
and Changqin Jin. Phase coexistence evolution of nano BaTiO3 as
function of particle sizes and temperatures. J. Appl. Phys. 2012. 112.
P. 064110. https://doi.org/10.1063/1.4751332
17.
Eliseev E.A., Morozovska A.N., Glinchuk M.D., and Kalinin S.V. Missed
surface waves in nonpiezoelectric solids. Phys. Rev. B. 2017. 96, No.4.
P. 045411. https://doi.org/10.1103/PhysRevB.96.045411
18.
Morozovska A.N., Vysochanskii Yu.M., Varenik O.V., Silibin M.V.,
Kalinin S.V., and Eliseev E.A. Flexocoupling impact on the generalized
susceptibility and soft phonon modes in the ordered phase of ferroics.
Phys. Rev. B. 2015. 92, No 9. P. 094308. https://doi.org/10.1103/PhysRevB.92.094308
19.
Morozovska A.N., Eliseev E.A., Scherbakov Ch.M., and Vysochanskii Yu.M.
The influence of elastic strain gradient on the upper limit of
flexocoupling strength, spatially-modulated phases and soft phonon
dispersion in ferroics. Phys. Rev. B. 2016. 94. P. 174112. https://doi.org/10.1103/PhysRevB.94.174112
20.
Morozovska A.N., Glinchuk M.D., Eliseev E.A., and Vysochanskii Yu.M.
Flexocoupling-induced soft acoustic mode and the spatially modulated
phases in ferroelectrics. Phys. Rev. B. 2017. 96. P. 094111. https://doi.org/10.1103/PhysRevB.96.094111
21.
Hlinka J., Quilichini M., Currat R., and Legrand J.F. Dynamical
properties of the normal phase of betaine calcium chloride dihydrate.
I. Experimental results. J. Phys.: Condens. Matter. 1996. 8, No 43. P.
8207. https://doi.org/10.1088/0953-8984/8/43/016
22.
Eliseev E.A., Vorotiahin I.S., Fomichov Ye.M., Glinchuk M.D., Kalinin
S.V., Genenko Yu.A., and Morozovska A.N. Defect driven flexo-chemical
coupling in thin ferroelectric films. Phys. Rev. B. 2018. 97. P. 024102. https://doi.org/10.1103/PhysRevB.97.024102
23.
Tagantsev A.K. and Gerra G. Interface-induced phenomena in polarization
response of ferroelectric thin films. J. Appl. Phys. 2006. 100. P.
051607. https://doi.org/10.1063/1.2337009
24.
Eliseev E.A., Morozovska A.N., Glinchuk M.D., and Blinc R. Spontaneous
flexoelectric / flexomagnetic effect in nanoferroics. Phys. Rev. B.
2009. 79, No 16. P. 165433-1-10. https://doi.org/10.1103/PhysRevB.79.165433
25.
Yudin P.V., Ahluwalia R., Tagantsev A.K. Upper bounds for flexocoupling
coefficients in ferroelectrics. Appl. Phys. Lett. 2014. 104, No 8. P.
082913. https://doi.org/10.1063/1.4865208
26.
Yudin P.V., Ahluwalia R., Tagantsev A.K. Upper bounds for flexocoupling
coefficients in ferroelectrics. Appl. Phys. Lett. 2014. 104. P. 082913. https://doi.org/10.1063/1.4865208
27.
Morozovska A.N., Eliseev E.A., Scherbakov C.M., and Vysochanskii Y.M.
The influence of elastic strain gradient on the upper limit of
flexocoupling strength, spatially-modulated phases and soft phonon
dispersion in ferroics. Phys. Rev. B. 2016. 94. P. 174112. https://doi.org/10.1103/PhysRevB.94.174112
28.
Wang J., Tagantsev A.K., and Setter N. Size effect in ferroelectrics:
Competition between geometrical and crystalline symmetries. Phys. Rev.
B. 2011. 83, No 1. P. 014104. https://doi.org/10.1103/PhysRevB.83.014104
29.
Maranganti R. and Sharma P. A novel atomistic approach to determination
of strain-gradient elasticity constants: Tabulation and comparison for
various metals, semiconductors, silica, polymers and the (ir) relevance
for nanotechnologies. J. Mech. Phys. Solids. 2007. 55. P. 1823. https://doi.org/10.1016/j.jmps.2007.02.011
30. Yurkov A.S. Elastic boundary conditions in the presence of the flexoelectric effect. JETP Lett. 2011. 94, No 6. P. 455. https://doi.org/10.1134/S0021364011180160
31.
Flexoelectricity in Solids: From Theory to Applications. Ed. by A.K.
Tagantsev and P.V. Yudin. World Scientific, 2016 and Refs. therein.
32.
Yudin P.V., Tagantsev A.K., Eliseev E.A., Morozovska A.N. and Setter N.
Bichiral structure of ferroelectric domain walls driven by
flexoelectricity. Phys. Rev. B. 2012. 86. P. 134102. https://doi.org/10.1103/PhysRevB.86.134102
33.
Eliseev E.A., Yudin P.V., Kalinin S.V., Setter N., Tagantsev A.K. and
Morozovska A.N. Structural phase transitions and electronic phenomena
at 180-degree domain walls in rhombohedral BaTiO3.Phys. Rev. B. 2013.
87. P. 054111. https://doi.org/10.1103/PhysRevB.87.054111
34.
Exactly these conditions correspond to the minimum of the Gibbs
potential, see §10 in: L.D. Landau and E.M. Lifshitz, Theoretical
Physics, Electrodynamics of Continuous Media, Vol. VIII. Pergamon,
Oxford, 1963.
35. Sheldon B.W., Shenoy V.B. Space charge
induced surface stresses: implications in ceria and other ionic solids.
Phys. Rev. Lett. 2011. 106. P. 216104. https://doi.org/10.1103/PhysRevLett.106.216104