1. Schaaf P. Laser Processing of Materials (Fundamentals, Applications and Developments). Heidelberg: Springer-Verlag, 2010. https://doi.org/10.1007/978-3-642-13281-0
2.
Liu B., Hu Z., Che Y., Allenic A., Sun K., Pan X. Growth of ZnO
nanoparticles and nanorods with ultrafast pulsed laser deposition.
Appl. Phys. A. 2008. 93. P. 813–818. https://doi.org/10.1007/s00339-008-4754-1
3.
Vorobyev A.Y., Guo C., Makin V.S., Kokody N.G., Kuzmichev V.M.
Extraordinary enhanced absorptivity of gold surface ablated with
femtosecond laser pulses. Proc. SPIE. 2008. 7009. P. 700913. https://doi.org/10.1117/12.793443
4.
Murakami M., Liu B., Hu Z., Liu Z., Uehara Y., and Che Y. Burst-mode
femtosecond pulsed laser deposition for control of thin film morphology
and material ablation. Appl. Phys. Exp. 2009. 2. P. 042501. https://doi.org/10.1143/APEX.2.042501
5.
Khan S. Z., Yuan Y., Abdolvand A., Schmidt M., Crouse P., Li L., Liu
Z., Sharp M., Watkins K.G. Generation and characterization of NiO
nanoparticles by continuous wave fiber laser ablation in liquid. J.
Nanoparticle Res. 2009. 11. P. 1421–1427. https://doi.org/10.1007/s11051-008-9530-9
6.
Ullmann M., Friedlander S.K. and Schmidt-Ott A. Nanoparticle formation
by laser ablation. J. Nanoparticle Res. 2002. 4. P. 499–509. https://doi.org/10.1023/A:1022840924336
7.
Ko S. H., Choi Y., Hwang D.J., and Grigoropoulos C.P., Chung J.,
Poulikakos D. Nanosecond laser ablation of gold nanoparticle films.
Appl. Phys. Lett. 2006. 89. P. 141126. https://doi.org/10.1063/1.2360241
8.
Hiromatsu K., Hwang D.J., Grigoropoulos C.P. Active glass nanoparticles
by ultrafast laser pulses. Micro & Nano Letters. 2008. 3, No 4. P.
121–124. https://doi.org/10.1049/mnl:20080028
9.
Eliezer S., Eliaz N., Grossman E., Fisher D., Gouzman I., Henis Z.,
Pecker S., Horovitz Y., Fraenkel M., Maman S., and Lereah Y. Synthesis
of nanoparticles with femtosecond laser pulses. Phys. Rev. B. 2004. 69.
P. 144119. https://doi.org/10.1103/PhysRevB.69.144119
10.
Sanz M., Walczak M., de Nalda R., Oujja M., Marco J. F., Rodriguez J.,
Izquierdo J. G., Banares L., Castillejo M. Femtosecond pulsed laser
deposition of nanostructured TiO2 films. Appl. Surf. Sci. 2009. 255. P.
5206–5210. https://doi.org/10.1016/j.apsusc.2008.07.148
11.
Jeong A.R., Jo W., Ko C., Han M., Kang S.J., Kim M., Park D.Y., Cheong
H., Yun H.J. Growth and structural properties of pulsed laser-ablated
CuInSe2 nanoparticles by pulsed-laser ablation and selenization
process. Journal of Alloys and Compounds. 2011. 509. P. 8073–8076. https://doi.org/10.1016/j.jallcom.2011.05.035
12.
Noel S., Hermann J., Itina T. Investigation of nanoparticle generation
during laser ablation of metals. Appl. Surf. Sci. 2007. 253. P.
6310–6315. https://doi.org/10.1016/j.apsusc.2007.01.081
14.
Bonse J., Rosenfeld A., Krueger J. On the role of surface Plasmon
polaritons in the formation of laser-induced periodic surface
structures upon irradiation of silicon by femtosecond laser pulses. J.
Appl. Phys. 2009. 106. P. 104910. https://doi.org/10.1063/1.3261734
15.
Datsyuk V.V., Pavlyniuk O.R. Maxwell stress on a small dielectric
sphere in a dielectric. Phys. Rev. A. 2015. 91, No 2. P. 023826. https://doi.org/10.1103/PhysRevA.91.023826
16. Rozouvan S. and Dreier T. Polarization-dependent laser-induced grating measurements. Opt. Lett. 1999. 24. P. 1596–1598. https://doi.org/10.1364/OL.24.001596
17. Rozouvan S. Polarization dependent electrostrictive grating measurements. J. Chem. Phys. 2007. 127. P. 084501. https://doi.org/10.1063/1.2761890
18.
Bolotovskii B.M., Serov A.V. Details of the motion of charged
nonrelativistic particles in a variable field. Physics-Uspekhi. 1994.
37. P. 515–516. https://doi.org/10.1070/PU1994v037n05ABEH000111