Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (2) P. 160-166 (2018).
DOI: https://doi.org/10.15407/spqeo21.02.160


References

1. Schaaf P. Laser Processing of Materials (Fundamentals, Applications and Developments). Heidelberg: Springer-Verlag, 2010.
https://doi.org/10.1007/978-3-642-13281-0
 
2. Liu B., Hu Z., Che Y., Allenic A., Sun K., Pan X. Growth of ZnO nanoparticles and nanorods with ultrafast pulsed laser deposition. Appl. Phys. A. 2008. 93. P. 813–818.
https://doi.org/10.1007/s00339-008-4754-1
 
3. Vorobyev A.Y., Guo C., Makin V.S., Kokody N.G., Kuzmichev V.M. Extraordinary enhanced absorptivity of gold surface ablated with femtosecond laser pulses. Proc. SPIE. 2008. 7009. P. 700913.
https://doi.org/10.1117/12.793443
 
4. Murakami M., Liu B., Hu Z., Liu Z., Uehara Y., and Che Y. Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation. Appl. Phys. Exp. 2009. 2. P. 042501.
https://doi.org/10.1143/APEX.2.042501
 
5. Khan S. Z., Yuan Y., Abdolvand A., Schmidt M., Crouse P., Li L., Liu Z., Sharp M., Watkins K.G. Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid. J. Nanoparticle Res. 2009. 11. P. 1421–1427.
https://doi.org/10.1007/s11051-008-9530-9
 
6. Ullmann M., Friedlander S.K. and Schmidt-Ott A. Nanoparticle formation by laser ablation. J. Nanoparticle Res. 2002. 4. P. 499–509.
https://doi.org/10.1023/A:1022840924336
 
7. Ko S. H., Choi Y., Hwang D.J., and Grigoropoulos C.P., Chung J., Poulikakos D. Nanosecond laser ablation of gold nanoparticle films. Appl. Phys. Lett. 2006. 89. P. 141126.
https://doi.org/10.1063/1.2360241
 
8. Hiromatsu K., Hwang D.J., Grigoropoulos C.P. Active glass nanoparticles by ultrafast laser pulses. Micro & Nano Letters. 2008. 3, No 4. P. 121–124.
https://doi.org/10.1049/mnl:20080028
 
9. Eliezer S., Eliaz N., Grossman E., Fisher D., Gouzman I., Henis Z., Pecker S., Horovitz Y., Fraenkel M., Maman S., and Lereah Y. Synthesis of nanoparticles with femtosecond laser pulses. Phys. Rev. B. 2004. 69. P. 144119.
https://doi.org/10.1103/PhysRevB.69.144119
 
10. Sanz M., Walczak M., de Nalda R., Oujja M., Marco J. F., Rodriguez J., Izquierdo J. G., Banares L., Castillejo M. Femtosecond pulsed laser deposition of nanostructured TiO2 films. Appl. Surf. Sci. 2009. 255. P. 5206–5210.
https://doi.org/10.1016/j.apsusc.2008.07.148
 
11. Jeong A.R., Jo W., Ko C., Han M., Kang S.J., Kim M., Park D.Y., Cheong H., Yun H.J. Growth and structural properties of pulsed laser-ablated CuInSe2 nanoparticles by pulsed-laser ablation and selenization process. Journal of Alloys and Compounds. 2011. 509. P. 8073–8076.
https://doi.org/10.1016/j.jallcom.2011.05.035
 
12. Noel S., Hermann J., Itina T. Investigation of nanoparticle generation during laser ablation of metals. Appl. Surf. Sci. 2007. 253. P. 6310–6315.
https://doi.org/10.1016/j.apsusc.2007.01.081
 
13. Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 1970. 24, No 4. P. 156–159.
https://doi.org/10.1103/PhysRevLett.24.156
 
14. Bonse J., Rosenfeld A., Krueger J. On the role of surface Plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses. J. Appl. Phys. 2009. 106. P. 104910.
https://doi.org/10.1063/1.3261734
 
15. Datsyuk V.V., Pavlyniuk O.R. Maxwell stress on a small dielectric sphere in a dielectric. Phys. Rev. A. 2015. 91, No 2. P. 023826.
https://doi.org/10.1103/PhysRevA.91.023826
 
16. Rozouvan S. and Dreier T. Polarization-dependent laser-induced grating measurements. Opt. Lett. 1999. 24. P. 1596–1598.
https://doi.org/10.1364/OL.24.001596
 
17. Rozouvan S. Polarization dependent electrostrictive grating measurements. J. Chem. Phys. 2007. 127. P. 084501.
https://doi.org/10.1063/1.2761890
 
18. Bolotovskii B.M., Serov A.V. Details of the motion of charged nonrelativistic particles in a variable field. Physics-Uspekhi. 1994. 37. P. 515–516.
https://doi.org/10.1070/PU1994v037n05ABEH000111