Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (2) P. 173-179 (2018).
DOI: https://doi.org/10.15407/spqeo21.02.173


References

1. Pankove J. Optical Processes in Semiconductors. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1971.
 
2. Prince M.B. Drift mobilities in semiconductors. I. Germanium. Phys. Rev. 1953. 92. P. 681–687.
https://doi.org/10.1103/PhysRev.92.681
 
3. Capron E., Brill O. Resistance for Optical Germanium at 10.6 μm. Appl. Opt. 1973. 12. P. 569–572.
https://doi.org/10.1364/AO.12.000569
 
4. Hutchinson C., Lewis C., Savage J., Pitt A. Surface and bulk absorption in germanium at 10.6 μm. Appl. Opt. 1982. 21. P. 1490–1495.
https://doi.org/10.1364/AO.21.001490
 
5. Pekar G.S., Singaevsky A.F. Na-doped optical germanium bulk crystals. Appl. Phys. A. 2012. 108. P. 657–664 (doi: 10.1007/s00339-012-6947-x).
https://doi.org/10.1007/s00339-012-6947-x
 
6. Pekar G.S., Singaevsky A.F. Solubility, diffusion and electrical activity of Na in bulk Ge crystals. Mater. Sci. in Semiconductor Proc. 2017. 64. P. 10–15 (http://dx.doi.org/10.1016/j. mssp.2017.02.026).
 
7. Schroeder J., Rosolowski J.H. Light scattering in polycrystalline materials. Proc. SPIE. 1982. 297. P. 156–168 (doi: 10.1117/12.932497).
https://doi.org/10.1117/12.932497
 
8. Adams J.H. Specifications for optical grade germanium and silicon blanks. Proc. SPIE. 1983. 406. P. 51–60 (doi: 10.1117/12.935669).
https://doi.org/10.1117/12.935669
 
9. Van Goethem L., Van Maele L.Ph., Van Sande M., Trade-offs using poly versus monocrystalline Germanium for infrared optics. Proc. SPIE. 1986. 683. P. 160–165 (doi: 10.1117/12.936432).
https://doi.org/10.1117/12.936432
 
10. Kaplunov I.A., Kolesnikov A.I., Talyzin I.V., Shaiovich S.L. Light scattering by single crystals of paratellurite and germanium. J. Opt. Technol. 2005. 72, No 3. P. 271–275 (doi: 10.1364/JOT.72.000271).
https://doi.org/10.1364/JOT.72.000271
 
11. Hibbard D., Neff B., Klinger B., Stout M. Critical performance differences of monocrystalline versus polycrystalline germanium for optical application Light Works Optical Systems Proprietary Information, accessed at http://opticalsystems.com/files/7113/8558/1721/Ge_Mono_vs_Poly_paper-A.pdf
 
12. McNatt J.L., Handler P. Interband optical properties of grain boundaries in germanium: An amorphous system. Phys. Rev. 1969. 178. P. 1328–1336.
https://doi.org/10.1103/PhysRev.178.1328
 
13. Lewis C.L., Runalls R.H., Turner G.N., Davies S.T. Optical requirements for thermal imaging lenses. Proc. SPIE. 1979. 163. P. 1–7.
https://doi.org/10.1117/12.956904
 
14. Pekar G.S., Singaevsky A.F. Improved optical germanium: unconventional dopants, self-controlled technology. Materials of the E-MRS IUMRS ICEM 2006 Spring Meeting, Nice, France, 2006, P. 2-07.
 
15. Claeys C., Simoen E. Germanium-Based Technologies – From Materials to Devices. Elsevier, Amsterdam, 2007, and references therein.
 
16. Kaplunov I., Kolesnikov A. Effect of Germanium characteristics on IR radiation scattering surface. X-ray, Synchrotron and Neutron Investigations. 2002. 2. P. 14–19 (in Russian).
 
17. Kalinushkin V.P., Voronkov V.V., Voronkova G.I., Golovina V.N., Zubov B.V., Murina T.M., A.M. Prokhorov Impurity Clouds in Silicon and Germanium, In: Physical Processes in Laser-Materials Interactions, ed. M. Bertolotti. Springer Science & Business Media, 2013, P. 405–412 (Proc. of the 1980 NATO Advanced Study Institutes Series).
 
18. Bagdasarov Kh.S. High-temperature Crystallization from Melt. Moscow: Fizmatlit, 2004 (in Russian).
 
19. Asatryan D.G. Image blur estimation using gradient field analysis. Computer Optics. 2017. 41, No 6. P. 957–962.
https://doi.org/10.18287/2412-6179-2017-41-6-957-962