Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (2) P. 180-186 (2018).
DOI: https://doi.org/10.15407/spqeo21.02.180


References

1. Faist J., Capasso F., Sivco D.L., Hutchinson A.L., and Cho A.Y. Quantum cascade laser. Science. 1994. 264(5158). P. 553–556.
https://doi.org/10.1126/science.264.5158.553
 
2. Razeghi M., Bandyopadhyay N., Bai Y., Lu Q., and Slivken S. Recent advances in mid infrared (3-5 ΅m) Quantum Cascade Lasers. Opt. Mater. Exp. 2013. 3, No 11. P. 1872–1884.
https://doi.org/10.1364/OME.3.001872
 
3. Razeghi M., Lu Q.Y., Bandyopadhyay N., Zhou W., Heydari D., Bai Y., and Slivken S. Quantum cascade lasers: from tool to product. Opt. Exp. 2015. 23, No 7. P. 8462–8475.
https://doi.org/10.1364/OE.23.008462
 
4. Baranov A.N., Bahriz M., and Teissier R. Room temperature continuous wave operation of InAsbased quantum cascade lasers at 15 ΅m. Opt. Exp. 2016. 24, No 16. P. 18799–18806.
https://doi.org/10.1364/OE.24.018799
 
5. Belkin M.A. and Capasso F. New frontiers in quantum cascade lasers: high performance room temperature terahertz sources. Phys. Scr. 2015. 90. P. 118002–118012.
https://doi.org/10.1088/0031-8949/90/11/118002
 
6. Kindness S.J., Jessop D.S., Wei B., Wallis R., Kamboj V.S., Xiao L., Ren Y., BraeuningerWeimer P., Aria A.I., Hofmann S., Beere H.E., Ritchie D.A., Degl'Innocenti R. External amplitude and frequency modulation of a terahertz quantum cascade laser using metamaterial/graphene devices. Sci. Repts. 2017. 7, No 1. P. 7657.
https://doi.org/10.1038/s41598-017-07943-w
 
7. Liang G., Liu T., Wang Q.J., Recent developments of terahertz quantum cascade lasers. IEEE Journal of Selected Topics in Quantum Electronics. 2017. 23, No 4. P. 1200118.
https://doi.org/10.1109/JSTQE.2016.2625982
 
8. Wei S., Kulkarni P., Ashley K. and Zheng L. Measurement of crystalline silica aerosol using quantum cascade laser–based infrared spectroscopy. Sci. Repts. 2017. 7. P. 13860.
https://doi.org/10.1038/s41598-017-14363-3
 
9. Kazakov D., Piccardo M., Wang Y., Chevalier P., Mansuripur T.S., Xie F., Zah C., Lascola K., Belyanin A. and Capasso F. Self-starting harmonic frequency comb generation in a quantum cascade laser. Nature Photonics. 2017. 11. P. 789–792.
https://doi.org/10.1038/s41566-017-0026-y
 
10. Khalatpour A., Reno J.L., Kherani N.P., and Hu Q. Unidirectional photonic wire laser. Nature Photonics. 2017. 11. P. 555–559. 11. Faist J., Villares G., Scalari G., Rösch M., Bonzon C., Hugi A., Beck M. Quantum cascade laser frequency combs. Nanophotonics. 2016. 5, No 2. P. 272–291.
 
12. Iotti R.C. and Rossi F. Nature of charge transport in quantum-cascade lasers. Phys. Rev. Lett. 2001. 87. P. 146603-1–146603-4.
https://doi.org/10.1103/PhysRevLett.87.146603
 
13. Wacker A. Gain in quantum cascade lasers and superlattices: A quantum transport theory. Phys. Rev. B. 2002. 66. P. 085326.
https://doi.org/10.1103/PhysRevB.66.085326
 
14. Lee S-C. and Wacker A. Nonequilibrium Green's function theory for transport and gain properties of quantum cascade structures. Phys. Rev. B. 2002. 66, No 24. P. 245314.
https://doi.org/10.1103/PhysRevB.66.245314
 
15. Donovan K., Harrison P., and Kelsall R.W. Selfconsistent solutions to the intersubband rate equations in quantum cascade lasers: Analysis of a GaAs/AlxGa1-xAs device. J. Appl. Phys. 2001. 89, No 6. P. 3084–3090.
https://doi.org/10.1063/1.1341216
 
16. Schrottke L., Giehler M., Wienold M., Hey R., and Grahn H.T. Compact model for the efficient simulation of the optical gain and transport properties in THz quantum-cascade lasers. Semicond. Sci. Technol. 2010. 25. P. 045025–045034.
https://doi.org/10.1088/0268-1242/25/4/045025
 
17. Kurlov S.S., Flores Y.V., Elagin M., Semtsiv M.P., Schrottke L., Grahn H.T., Tarasov G.G., and Masselink W.T. Phenomenological scattering-rate model for the simulation of the current density and emission power in mid-infrared quantum cascade lasers. J. Appl. Phys. 2016. 119. P. 134501–134506.
https://doi.org/10.1063/1.4945364
 
18. Siegman A.E. Lasers. University Science Books, Mill Valley, 1986.
 
19. Faist K., Hofstetter D., Beck M., Aellen T., Rochat M., and Blaser S. Bound-to-continuum and twophonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation. IEEE J. Quantum Electron. 2002. 38. P. 533–546.
https://doi.org/10.1109/JQE.2002.1005404
 
20. Lu S.L., Schrottke L., Teitsworth S.W., Hey R., and Grahn H.T. Formation of electric-field domains in GaAs/AlxGa1−xAs quantum cascade laser structures. Phys. Rev. B. 2006. 73. 033311 (4 p.).
 
21. Harrison P. Quantum Wells, Wires and Dots: Theoretical and Computational Physics. Wiley, Chichester, 2010.
 
22. Jirauschek C. and Kubis T. Modeling techniques for quantum cascade lasers. Appl. Phys. Rev. 2014. 1. 011307 (P. 1–51).
 
23. Gradshteyn and Ryzhik's Table of Integrals, Series, and Products. D. Zwillinger and V. Moll (eds.). 8-th edition (Oct. 2014). P. 1184.
 
24. Khurgin J.B., Dikmelik Y., Liu P.Q., Hoffman A.J., Escarra M.D., Franz K.J., and Gmach C.F., Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers. Appl.Phys. Lett. 2009. 94. 091101 (3 p.).