2.
Razeghi M., Bandyopadhyay N., Bai Y., Lu Q., and Slivken S. Recent
advances in mid infrared (3-5 ΅m) Quantum Cascade Lasers. Opt. Mater.
Exp. 2013. 3, No 11. P. 18721884. https://doi.org/10.1364/OME.3.001872
3.
Razeghi M., Lu Q.Y., Bandyopadhyay N., Zhou W., Heydari D., Bai Y., and
Slivken S. Quantum cascade lasers: from tool to product. Opt. Exp.
2015. 23, No 7. P. 84628475. https://doi.org/10.1364/OE.23.008462
4.
Baranov A.N., Bahriz M., and Teissier R. Room temperature continuous
wave operation of InAsbased quantum cascade lasers at 15 ΅m. Opt. Exp.
2016. 24, No 16. P. 1879918806. https://doi.org/10.1364/OE.24.018799
5.
Belkin M.A. and Capasso F. New frontiers in quantum cascade lasers:
high performance room temperature terahertz sources. Phys. Scr. 2015.
90. P. 118002118012. https://doi.org/10.1088/0031-8949/90/11/118002
6.
Kindness S.J., Jessop D.S., Wei B., Wallis R., Kamboj V.S., Xiao L.,
Ren Y., BraeuningerWeimer P., Aria A.I., Hofmann S., Beere H.E.,
Ritchie D.A., Degl'Innocenti R. External amplitude and frequency
modulation of a terahertz quantum cascade laser using
metamaterial/graphene devices. Sci. Repts. 2017. 7, No 1. P. 7657. https://doi.org/10.1038/s41598-017-07943-w
7.
Liang G., Liu T., Wang Q.J., Recent developments of terahertz quantum
cascade lasers. IEEE Journal of Selected Topics in Quantum Electronics.
2017. 23, No 4. P. 1200118. https://doi.org/10.1109/JSTQE.2016.2625982
8.
Wei S., Kulkarni P., Ashley K. and Zheng L. Measurement of crystalline
silica aerosol using quantum cascade laserbased infrared spectroscopy.
Sci. Repts. 2017. 7. P. 13860. https://doi.org/10.1038/s41598-017-14363-3
9.
Kazakov D., Piccardo M., Wang Y., Chevalier P., Mansuripur T.S., Xie
F., Zah C., Lascola K., Belyanin A. and Capasso F. Self-starting
harmonic frequency comb generation in a quantum cascade laser. Nature
Photonics. 2017. 11. P. 789792. https://doi.org/10.1038/s41566-017-0026-y
10.
Khalatpour A., Reno J.L., Kherani N.P., and Hu Q. Unidirectional
photonic wire laser. Nature Photonics. 2017. 11. P. 555559. 11. Faist
J., Villares G., Scalari G., Rösch M., Bonzon C., Hugi A., Beck M.
Quantum cascade laser frequency combs. Nanophotonics. 2016. 5, No 2. P.
272291.
13. Wacker A. Gain in quantum cascade lasers and superlattices: A quantum transport theory. Phys. Rev. B. 2002. 66. P. 085326. https://doi.org/10.1103/PhysRevB.66.085326
14.
Lee S-C. and Wacker A. Nonequilibrium Green's function theory for
transport and gain properties of quantum cascade structures. Phys. Rev.
B. 2002. 66, No 24. P. 245314. https://doi.org/10.1103/PhysRevB.66.245314
15.
Donovan K., Harrison P., and Kelsall R.W. Selfconsistent solutions to
the intersubband rate equations in quantum cascade lasers: Analysis of
a GaAs/AlxGa1-xAs device. J. Appl. Phys. 2001. 89, No 6. P. 30843090. https://doi.org/10.1063/1.1341216
16.
Schrottke L., Giehler M., Wienold M., Hey R., and Grahn H.T. Compact
model for the efficient simulation of the optical gain and transport
properties in THz quantum-cascade lasers. Semicond. Sci. Technol. 2010.
25. P. 045025045034. https://doi.org/10.1088/0268-1242/25/4/045025
17.
Kurlov S.S., Flores Y.V., Elagin M., Semtsiv M.P., Schrottke L., Grahn
H.T., Tarasov G.G., and Masselink W.T. Phenomenological scattering-rate
model for the simulation of the current density and emission power in
mid-infrared quantum cascade lasers. J. Appl. Phys. 2016. 119. P.
134501134506. https://doi.org/10.1063/1.4945364
18. Siegman A.E. Lasers. University Science Books, Mill Valley, 1986.
19.
Faist K., Hofstetter D., Beck M., Aellen T., Rochat M., and Blaser S.
Bound-to-continuum and twophonon resonance, quantum-cascade lasers for
high duty cycle, high-temperature operation. IEEE J. Quantum Electron.
2002. 38. P. 533546. https://doi.org/10.1109/JQE.2002.1005404
20.
Lu S.L., Schrottke L., Teitsworth S.W., Hey R., and Grahn H.T.
Formation of electric-field domains in GaAs/AlxGa1−xAs quantum cascade
laser structures. Phys. Rev. B. 2006. 73. 033311 (4 p.).
21. Harrison P. Quantum Wells, Wires and Dots: Theoretical and Computational Physics. Wiley, Chichester, 2010.
22. Jirauschek C. and Kubis T. Modeling techniques for quantum cascade lasers. Appl. Phys. Rev. 2014. 1. 011307 (P. 151).
23.
Gradshteyn and Ryzhik's Table of Integrals, Series, and Products. D.
Zwillinger and V. Moll (eds.). 8-th edition (Oct. 2014). P. 1184.
24.
Khurgin J.B., Dikmelik Y., Liu P.Q., Hoffman A.J., Escarra M.D., Franz
K.J., and Gmach C.F., Role of interface roughness in the transport and
lasing characteristics of quantum-cascade lasers. Appl.Phys. Lett.
2009. 94. 091101 (3 p.).