Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (2) P. 187-194 (2018).
DOI: https://doi.org/10.15407/spqeo21.02.187


References

1.    Melezhik E.O., Gumenjuk-Sichevska J.V., Sizov F.F. Modeling of noise and resistance of semimetal Hg1-xCdxTe quantum well used as a channel for THz hot-electron bolometer. Nanoscale Res. Lett. 2016. 11, No 1. P. 181.
https://doi.org/10.1186/s11671-016-1405-x
 
2.    Brüne C., Thienel C., Stuiber M., Böttcher J., Buhmann H., Novik E.G., Chao-Xing Liu, Hankiewicz E.M., and Molenkamp L.W. Dirac-screening stabilized surface-state transport in a topological insulator. Phys. Rev. X. 2014. 4. P. 041045.
https://doi.org/10.1103/PhysRevX.4.041045
 
3.    Hwang E.H., Das Sarma S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B. 2007. 75, No 20. P. 205418.
https://doi.org/10.1103/PhysRevB.75.205418
 
4.    Ando T., Fowler A.B. and Stern F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 1982. 54. P. 437.
https://doi.org/10.1103/RevModPhys.54.437
 
5.    Melezhik E.O., Gumenjuk-Sichevska J.V. and Sizov F.F. Modeling of electron energy spectra and mobilities in semi-metallic Hg1−xCdxTe quantum wells. J. Appl. Phys. 2015. 118, No 19. P. 194305.
https://doi.org/10.1063/1.4936173
 
6. Yi-Ping Lai, I-Tan Lin, Kuang-Hsiung Wu and Jia-Ming Liu, Plasmonics in topological insulators. Nanomaterials and Nanotechnology. 2014. 4, No 13. doi: 10.5772/58558.
https://doi.org/10.5772/58558
 
7. Bouvier C., Meunier T., Kramer R., Levy L.P., Baudry X. and Ballet P. Strained HgTe: a textbook 3D topological insulator. arXiv, https://arxiv.org/abs/1112.2092v1 (2011).
 
8.    Jin Li, Chaoyu He, Lijun Meng, Huaping Xiao, Chao Tang, Xiaolin Wei, Jinwoong Kim, Nicholas Kioussis, G. Malcolm Stocks & Jianxin Zhong, Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe. Sci. Repts. 2015. 5. P. 14115. doi: 10.1038/srep14115.
https://doi.org/10.1038/srep14115
 
9.    Danhong Huang, Zhitang Lin, Shixun Zhou, Dielectric response of a semi-infinite HgTe/CdTe superlattice from its bulk anti surface plasmons. Phys. Rev. B. 1989. 40, No 3. P. 1672.
https://doi.org/10.1103/PhysRevB.40.1672
 
10.    Dan-hong Huang, Jian-ping Peng and Shi-xun Zhou, Intrasubband and intersubband plasmons in a semi-infinite Fibonacci HgTe/CdTe superlattice. Phys. Rev. B. 1989. 40, No 11. P. 7754.
https://doi.org/10.1103/PhysRevB.40.7754
 
11.    Bansal M.L., Roy A.P., and Alka Ingale. Raman scattering from coupled plasmon-phonon modes in HgTe. Phys. Rev. B. 1990. 42, No 2. P. 1234.
https://doi.org/10.1103/PhysRevB.42.1234
 
12.    Juergens S., Michetti P., and Trauzettel B. Screening properties and plasmons of Hg(Cd)Te quantum wells. Phys. Rev. B. 2014. 90. P. 115425.
https://doi.org/10.1103/PhysRevB.90.115425
 
13.    Bernevig B.A., Hughes T.L., Zhang Shou-Cheng. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science. 2006. 314. P. 1757–1761.
https://doi.org/10.1126/science.1133734
 
14.    Meyer J.R., Arnold D.J., Hoffman C.A., Bartoli F.J. Electron and hole in-plane mobilities in HgTe-CdTe superlattices. Phys. Rev. B. 1992. 46. P. 4139.
https://doi.org/10.1103/PhysRevB.46.4139
 
15.    Nafidi A. Correlation Between Band Structure and Magneto-Transport Properties in n-type HgTe/CdTe Two-Dimensional Nanostructure Superlattice. Application to Far-Infrared Detection, Chap. 6, in: Optoelectronics – Advanced Materials and Devices, Eds. S.L. Pyshkin and J.M. Ballato. InTech, 2013, p. 145.
https://doi.org/10.5772/52101