1. Maier S.A., Atwater H.A. Plasmonics:
Localization and guiding of electromagnetic energy in metal/dielectric
structures. J. Appl. Phys. 2005. 98, No 1. P. 10. https://doi.org/10.1063/1.1951057
3.
Su C. Environmental implications and applications of engineered
nanoscale magnetite and its hybrid nanocomposites: A review of recent
literature. Journal of hazardous materials. 2017. 322. P. 48–84. https://doi.org/10.1016/j.jhazmat.2016.06.060
4.
Huang X., Jiang P. Core–shell structured high polymer nanocomposites
for energy storage and dielectric applications. Adv. Mater. 2015. 27,
No. 3. P. 546–554. https://doi.org/10.1002/adma.201401310
5.
García M.A. Surface plasmons in metallic nanoparticles: Fundamentals
and applications. J. Phys. D: Appl. Phys. 2011. 44, No. 28. P. 283001. https://doi.org/10.1088/0022-3727/44/28/283001
6. Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. John Wiley & Sons, 2008.
8.
Jylhä L., Sihvola A. Equation for the effective permittivity of
particle-filled composites for material design applications. J. Phys.
D: Appl. Phys. 2007. 40, No. 16. P. 4966. https://doi.org/10.1088/0022-3727/40/16/032
9.
Mallet P., Guérin C.A., Sentenac A. Maxwell–Garnett mixing rule in the
presence of multiple scattering: Derivation and accuracy. Phys. Rev. B.
2005. 72, No. 1. P. 014205. https://doi.org/10.1103/PhysRevB.72.014205
10.
Levy O., Stroud D. Maxwell–Garnett theory for mixtures of anisotropic
inclusions: Application to conducting polymers. Phys. Rev. B. 1997. 56,
No. 13. P. 8035. https://doi.org/10.1103/PhysRevB.56.8035
12.
Myroshnychenko V., Rodríguez-Fernández J., Pastoriza-Santos I., Funston
A.M., Novo C., Mulvaney P., de Abajo F.J.G. Modelling the optical
response of gold nanoparticles. Chem. Soc. Rev. 2008. 37, No. 9. P.
1792–1805. https://doi.org/10.1039/b711486a
13.
Battie Y., Resano-Garcia A., Chaoui N., Zhang Y., En Naciri A. Extended
Maxwell–Garnett–Mie formulation applied to size dispersion of metallic
nanoparticles embedded in host liquid matrix. J. Chem. Phys. 2014. 140,
No 4. P. 044705–044705. https://doi.org/10.1063/1.4862995
14.
Bockstaller M.R., Thomas E.L. Optical properties of polymer-based
photonic nanocomposite materials. J. Phys. Chem. B. 2003. 107, No 37.
P. 10017–10024. https://doi.org/10.1021/jp035286j
15.
Faupel F., Zaporojtchenko V., Strunskus T., Elbahri M. Metal-polymer
nanocomposites for functional applications. Adv. Eng. Mater. 2010. 12,
No 12. P. 1177–1190. https://doi.org/10.1002/adem.201000231
16.
Yaremchuk I., Tamulevičienė A., Tamulevičius T., Šlapikas K.,
Balevičius Z., Tamulevičius S. Modeling of the plasmonic properties of
DLC-Ag nanocomposite films. phys. status solidi (a). 2014. 211, No 2.
P. 329–335.
18. Palik E.D. Silver (Ag), in: Handbook of Optical Constants of Solids, 1997. P. 429–443.
19.
West P.R., Ishii S., Naik G.V., Emani N.K., Shalaev V.M., Boltasseva A.
Searching for better plasmonic materials. Laser & Photonics Rev.
2010. 4, No 6. P. 795–808. https://doi.org/10.1002/lpor.200900055
20.
Fitio V., Vernygor O., Yaremchuk I., Bobitski Y. Analytical
Approximations of the Noble Metals Dielectric Permittivity. TCSET-2018.
21.
Yaremchuk I., Fitio V., Bobitski Y. Shape effect of silver
nanoparticles on plasmon properties of DLC:Ag nanocomposites.
TCSET-2016. P. 392–394 (2016).
22. Meškinis Š., Yaremchuk
I., Grigaliūnas V., Vasiliauskas A., Čiegis A. Plasmonic properties of
nanostructured diamond like carbon/silver nanocomposite films with
nanohole arrays. Mater. Sci. 2016. 22, No 4. P. 467–471. https://doi.org/10.5755/j01.ms.22.4.13193
23.
Yaremchuk I., Meškinis Š., Fitio V., Bobitski Y., Šlapikas K., Čiegis
A., Tamulevičius S. Spectroellipsometric characterization and modeling
of plasmonic diamond-like carbon nanocomposite films with embedded Ag
nanoparticles. Nanoscale Res. Lett. 2015. 10, No 1. P. 157. https://doi.org/10.1186/s11671-015-0854-y
24.
Alsawafta M., Badilescu S., Paneri A., Truong V.V., Packirisamy M.
Gold-poly(methyl methacrylate) nanocomposite films for plasmonic
biosensing applications. Polymers. 2011. 3, No 4. 1833–1848. https://doi.org/10.3390/polym3041833
25.
Yeshchenko O.A., Dmitruk I. M., Alexeenko A.A., Dmytruk A.M.
Size-dependent melting of spherical copper nanoparticles embedded in a
silica matrix. Phys. Rev. B. 2007. 75, No 8. P. 085434. https://doi.org/10.1103/PhysRevB.75.085434
26.
Zhang C., Zhang S., Yu L., Zhang Z., Wu Z., Zhang P. Preparation and
tribological properties of water-soluble copper/silica nanocomposite as
a water-based lubricant additive. Appl. Surf. Sci. 2012. 259. P.
824–830. https://doi.org/10.1016/j.apsusc.2012.07.132