Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (2) P. 195-199 (2018).
DOI: https://doi.org/10.15407/spqeo21.02.195


References

1. Maier S.A., Atwater H.A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 2005. 98, No 1. P. 10.
https://doi.org/10.1063/1.1951057
 
2. Prasad P.N. Nanophotonics. John Wiley & Sons, Inc.:  Hoboken NJ., 2004.
https://doi.org/10.1002/0471670251
 
3. Su C. Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature. Journal of hazardous materials. 2017. 322. P. 48–84.
https://doi.org/10.1016/j.jhazmat.2016.06.060
 
4. Huang X., Jiang P. Core–shell structured high polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 2015. 27, No. 3. P. 546–554.
https://doi.org/10.1002/adma.201401310
 
5. García M.A. Surface plasmons in metallic nanoparticles: Fundamentals and applications. J. Phys. D: Appl. Phys. 2011. 44, No. 28. P. 283001.
https://doi.org/10.1088/0022-3727/44/28/283001
 
6. Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. John Wiley & Sons, 2008.
 
7. Ruppin R. Evaluation of extended Maxwell–Garnett theories. Opt. Commun. 2000. 182, No 4. P. 273–279.
https://doi.org/10.1016/S0030-4018(00)00825-7
 
8. Jylhä L., Sihvola A. Equation for the effective permittivity of particle-filled composites for material design applications. J. Phys. D: Appl. Phys. 2007. 40, No. 16. P. 4966.
https://doi.org/10.1088/0022-3727/40/16/032
 
9. Mallet P., Guérin C.A., Sentenac A. Maxwell–Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy. Phys. Rev. B. 2005. 72, No. 1. P. 014205.
https://doi.org/10.1103/PhysRevB.72.014205
 
10. Levy O., Stroud D. Maxwell–Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers. Phys. Rev. B. 1997. 56, No. 13. P. 8035.
https://doi.org/10.1103/PhysRevB.56.8035
 
11. Doyle W.T. Optical properties of a suspension of metal spheres. Phys. Rev. B. 1989. 39, No. 14. P. 9852.
https://doi.org/10.1103/PhysRevB.39.9852
 
12. Myroshnychenko V., Rodríguez-Fernández J., Pastoriza-Santos I., Funston A.M., Novo C., Mulvaney P., de Abajo F.J.G. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 2008. 37, No. 9. P. 1792–1805.
https://doi.org/10.1039/b711486a
 
13. Battie Y., Resano-Garcia A., Chaoui N., Zhang Y., En Naciri A. Extended Maxwell–Garnett–Mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix. J. Chem. Phys. 2014. 140, No 4. P. 044705–044705.
https://doi.org/10.1063/1.4862995
 
14. Bockstaller M.R., Thomas E.L. Optical properties of polymer-based photonic nanocomposite materials. J. Phys. Chem. B. 2003. 107, No 37. P. 10017–10024.
https://doi.org/10.1021/jp035286j
 
15. Faupel F., Zaporojtchenko V., Strunskus T., Elbahri M. Metal-polymer nanocomposites for functional applications. Adv. Eng. Mater. 2010. 12, No 12. P. 1177–1190.
https://doi.org/10.1002/adem.201000231
 
16. Yaremchuk I., Tamulevičienė A., Tamulevičius T., Šlapikas K., Balevičius Z., Tamulevičius S. Modeling of the plasmonic properties of DLC-Ag nanocomposite films. phys. status solidi (a). 2014. 211, No 2. P. 329–335.
 
17. Johnson P.B., Christy, R.W. Optical constants of the noble metals. Phys. Rev. B. 1972. 6, No 12. P. 4370.
https://doi.org/10.1103/PhysRevB.6.4370
 
18. Palik E.D. Silver (Ag), in: Handbook of Optical Constants of Solids, 1997. P. 429–443.
 
19. West P.R., Ishii S., Naik G.V., Emani N.K., Shalaev V.M., Boltasseva A. Searching for better plasmonic materials. Laser & Photonics Rev. 2010. 4, No 6. P. 795–808.
https://doi.org/10.1002/lpor.200900055
 
20. Fitio V., Vernygor O., Yaremchuk I., Bobitski Y. Analytical Approximations of the Noble Metals Dielectric Permittivity. TCSET-2018.
 
21. Yaremchuk I., Fitio V., Bobitski Y. Shape effect of silver nanoparticles on plasmon properties of DLC:Ag nanocomposites. TCSET-2016. P. 392–394 (2016).
 
22. Meškinis Š., Yaremchuk I., Grigaliūnas V., Vasiliauskas A., Čiegis A. Plasmonic properties of nanostructured diamond like carbon/silver nanocomposite films with nanohole arrays. Mater. Sci. 2016. 22, No 4. P. 467–471.
https://doi.org/10.5755/j01.ms.22.4.13193
 
23. Yaremchuk I., Meškinis Š., Fitio V., Bobitski Y., Šlapikas K., Čiegis A., Tamulevičius S. Spectroellipsometric characterization and modeling of plasmonic diamond-like carbon nanocomposite films with embedded Ag nanoparticles. Nanoscale Res. Lett. 2015. 10, No 1. P. 157.
https://doi.org/10.1186/s11671-015-0854-y
 
24. Alsawafta M., Badilescu S., Paneri A., Truong V.V., Packirisamy M. Gold-poly(methyl methacrylate) nanocomposite films for plasmonic biosensing applications. Polymers. 2011. 3, No 4. 1833–1848.
https://doi.org/10.3390/polym3041833
 
25. Yeshchenko O.A., Dmitruk I. M., Alexeenko A.A., Dmytruk A.M. Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix. Phys. Rev. B. 2007. 75, No 8. P. 085434.
https://doi.org/10.1103/PhysRevB.75.085434
 
26. Zhang C., Zhang S., Yu L., Zhang Z., Wu Z., Zhang P. Preparation and tribological properties of water-soluble copper/silica nanocomposite as a water-based lubricant additive. Appl. Surf. Sci. 2012. 259. P. 824–830.
https://doi.org/10.1016/j.apsusc.2012.07.132