Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 150-155 (2019).
DOI:
https://doi.org/10.15407/spqeo22.02.150
References
1. Bhushan S., Mukherjee M. and Bose P. Electro-optical studies in chemically deposited La/Nd doped (Cd-Pb)S films. J. Mater. Sci: Mater. Electron. 2002. 13. P. 581-584. DOI: 10.1023/A:1020196030287. https://doi.org/10.1023/A:1020196030287 | | 2. Phillips J.C. and Van Vechten J.A. Spectroscopic analysis of cohesive energies and heats of formation of tetrahedrally coordinated semiconductors. Phys. Rev. B. 1970. 2, No 6. P. 2147. DOI: 10.1103/PhysRevB.2.2147. https://doi.org/10.1103/PhysRevB.2.2147 | | 3. Qadri S.B., Kumo M., Feng C.R., Rath B.B. and Yousuf M. High temperature structural studies of HgS and HgSe quantum dots. Appl. Phys. Lett. 2003. 83, No 19. P. 4011-4013. https://doi.org/10.1063/1.1625433. https://doi.org/10.1063/1.1625433 | | 4. Kowalski B.J., Szuszkiewicz W., Orlowski BA. et al. Photoemission study of β-HgS. Journal of Electron Spectroscopy and related Phenomena. 1997. 85, No 1. P. 17-22. DOI: 10.1016/S0368-2048(97)00020-0. https://doi.org/10.1016/S0368-2048(97)00020-0 | | 5. Dybko K., Szuszkiewicz W. and Witkowska B. New semimagnetivc semiconductors: HgS doped with transition metals. Defect and Diffusion Forum. 1995. 121/122. P. 41-0. https://doi.org/10.4028/www.scientific.net/DDF.121-122.41. https://doi.org/10.4028/www.scientific.net/DDF.121-122.41 | | 6. Mews A., Kadavanich A.V., Banin U. and Alivisatos A.P. Structural and spectroscopic investigation of CdS/HgS/CdS quantum-dots quantum wells. Phys. Rev. B. 1996. 53, No 20. P. R13242-R13245. DOI: 10.1103/PhysRevB.53.R13242. https://doi.org/10.1103/PhysRevB.53.R13242 | | 7. Zallen R. and Slade M. Plasma edge and band structure of cubic HgS. Solid State Commun. 1970. 8, No 16. P. 1291-1294. DOI: 10.1016/0038-1098(70)90622-8. https://doi.org/10.1016/0038-1098(70)90622-8 | | 8. Szuszkiewicz W., Witkowska B., Jouanne M., and Balkanski M. Raman spectroscopy of cubic Hg1-xFexS. Mater. Sci. Forum. 1995. 182-184. P. 711-714. https://doi.org/10.4028/www.scientific.net/MSF.182-184.711 | | 9. Cardona M., Kremer R.K., Lauck R., Siegle G., Munoz A. and Romero A.H. Electronic, vibra-tional, and thermodynamic properties of metacinnabar β-HgS, HgSe, and HgTe Phys. Rev. B. 2009. 80, No 19. P. 195204. https://doi.org/10.1103/PhysRevB.80.195204. https://doi.org/10.1103/PhysRevB.80.195204 | | 10. Wei S.H. and Zunger A. Role of metal d states in II-VI semiconductors. Phys. Rev. B. 1988. 37, No 15. P. 8958. https://doi.org/10.1103/PhysRevB.37.8958. https://doi.org/10.1103/PhysRevB.37.8958 | | 11. Heda N.L., Mathur S., Ahuja B.L. and Sharma B.K. Compton profiles and band structure cal-culations of CdS and CdTe. phys. status solidi (b). 2007. 244, No 3. P. 1070-1081. https://doi.org/10.1002/pssb.200642308. https://doi.org/10.1002/pssb.200642308 | | 12. Ahuja B.L. and Heda N.L. Electron momentum density in ZnSe: Theory and Experiment. Radiation Physics and Chemistry. 2007. 76, No 6. P. 921-928. https://doi.org/10.1016/j.radphyschem.2007.01.006. https://doi.org/10.1016/j.radphyschem.2007.01.006 | | 13. Mahapatra A.K. and Dash A.K. α-HgS nanocrystals: synthesis, structure and optical properties. Physica E. 2006. 35. P. 9-15. https://doi.org/10.1016/j.physe.2006.03.164 | | 14. Xu X. and Carraway E.R. Sonication-assissted synthesis of β-mercuric sulphide nanoparticle. Nanomaterials and Nanotechnology. 2012. 2, Art. 17. https://doi.org/10.5772/55823. https://doi.org/10.5772/55823 | | 15. Khalilzadeh M. and Kangarlou H. Optical properties determination of mercury sulfide biological composites. International Journal of Biology, Pharmacy and Allied Science. 2015. 4, No 11. P. 187-193. | | 16. Patil H.B., Borse S.V. and Ahire R.R. Structural, optical and thermoelectrical properties of mercury chromium sulfide thin film deposition by novel chemical route. IOSR J. Appl. Phys. 2017. 9, No 3 Ver. II. P. 08-14. DOI: 10.9790/4861-0903020814. https://doi.org/10.9790/4861-0903020814 | | 17. Kale S.S. and Lokhande C.D. Preparation and Characterization of HgS films by chemical deposition. Mater. Chem. Phys. 1999. 59, No 3. P. 242-246. DOI: 10.1016/S0254-0584(99)00048-6. https://doi.org/10.1016/S0254-0584(99)00048-6 | | 18. Kale S.S., Pathan H.M. and Lokhande C.D. Thickness dependent photoelectrochemical cells performance of CdSe and HgS thin film. J. Mater. Sci. 2005 40. P. 2635-2637. https://doi.org/10.1007/s10853-005-2093-6 | | 19. Kreingol'd F.I. Sov. Phys. Solid State. 1963. 4. P. 1904. | | 20. Robert C.G., Lind E.L. and Davis E.A. Photoelectronic properties of synthetic mercury sulphide crystals. J. Phys. Chem. Solids. 1969. 30, No 4. 833-844. https://doi.org/10.1016/0022-3697(69)90279-0. https://doi.org/10.1016/0022-3697(69)90279-0 | | 21. Virot F., Hayn R., Richter M., van den Brink J. Metacinnabar (β-HgS): A strong 3D topological insulator with highly anisotropic surface states. Phys. Rev. Lett. 2011. 106, No 23. P. 236806-1-4. DOI: 10.1103/PhysRevLett.106.236806. https://doi.org/10.1103/PhysRevLett.106.236806 | | 22. Zallan R. in: II-IV Semiconducting Compounds, D.G. Thomas (Ed.). W.A. Benjamin, Inc., New York, 1967. | | 23. Bond W.L., Boyd G.D., and Carter H.L. Jr. Refractive Indices of HgS (Cinnabar) between 0.62 and 11 μ. J. Appl. Phys. 1967. 38. P. 4090. https://doi.org/10.1063/1.1709079. https://doi.org/10.1063/1.1709079 | | 24. Sapriel J. Cinnabar (α HgS), a promising acousto-otical material. Appl. Phys. Lett. 1971. 19. P. 533. https://doi.org/10.1063/1.1653802. https://doi.org/10.1063/1.1653802 | | 25. Eschrig H. Fundamentals of Density Functional Theory (Revised and extended version). 1996. P. 5. DOI: 10.1007/978-3-322-97620-8. https://doi.org/10.1007/978-3-322-97620-8_7 | | 26. Zein N.E. Density functional calculations of elastic moduli and phonon spectra of crystals. Sov. Phys. Solid State. 1984. 26. P. 1825. | | 27. Blat D.K., Zein N.E., and Zinenko V.I. Calculations of phonon frequencies and dielectric constants of alkali hydrides via the density functional method. J. Phys.: Condensed Matter. 1991. 3, No 29. P. 5515. https://doi.org/10.1088/0953-8984/3/29/006 | | 28. Zein N.E. Ab initio calculations of phonon dispersion curves. Application to Nb and Mo. Phys. Lett. A. 1992. 161, No 6. P. 526-530. https://doi.org/10.1016/0375-9601(92)91086-7. https://doi.org/10.1016/0375-9601(92)91086-7 | | 29. Baroni S., de Gironcoli S., Carso A. Dal and Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001. 73, No 2. P. 515. https://doi.org/10.1103/RevModPhys.73.515. https://doi.org/10.1103/RevModPhys.73.515 | | 30. Akinlami J.O., Odeyemi O.O. Electronic structure and optical properties of HgSe. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2018. 21, No 3. P. 288-293. https://doi.org/10.15407/spqeo21.03.288. https://doi.org/10.15407/spqeo21.03.288 | | 31. Jones R.O. Introduction to Density Functional Theory and Exchange-Correlation Energy Functionals. NIC Series. 2006. 31. P. 45-70. https://www.fz-juelich.de/nic-series/volume31. | | 32. Gonze X., Beuken J.M., Caracas R. et al. First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 2002. 25, No 3. P. 478-482. https://doi.org/10.1016/S0927-0256(02)00325-7 | | 33. Monkhorst H.J. and Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976. 13, No 12. P. 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188. https://doi.org/10.1103/PhysRevB.13.5188 | | 34. Shafaay B. Al, Hassan F. El Haj, Korek M. First principle investigation of mercury chalcogenides and their HgSxSe1-x and HgSxTe1-x ternary alloys. Computat. Mater. Sci. 2014. 83. P. 107-113. https://doi.org/10.1016/j.commatsci.2013.10.044 | |
|
|