Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 150-155 (2019).
DOI: https://doi.org/10.15407/spqeo22.02.150


References

1. Bhushan S., Mukherjee M. and Bose P. Electro-optical studies in chemically deposited La/Nd doped (Cd-Pb)S films. J. Mater. Sci: Mater. Electron. 2002. 13. P. 581-584. DOI: 10.1023/A:1020196030287.
https://doi.org/10.1023/A:1020196030287
2. Phillips J.C. and Van Vechten J.A. Spectroscopic analysis of cohesive energies and heats of formation of tetrahedrally coordinated semiconductors. Phys. Rev. B. 1970. 2, No 6. P. 2147. DOI: 10.1103/PhysRevB.2.2147.
https://doi.org/10.1103/PhysRevB.2.2147
3. Qadri S.B., Kumo M., Feng C.R., Rath B.B. and Yousuf M. High temperature structural studies of HgS and HgSe quantum dots. Appl. Phys. Lett. 2003. 83, No 19. P. 4011-4013. https://doi.org/10.1063/1.1625433.
https://doi.org/10.1063/1.1625433
4. Kowalski B.J., Szuszkiewicz W., Orlowski BA. et al. Photoemission study of β-HgS. Journal of Electron Spectroscopy and related Phenomena. 1997. 85, No 1. P. 17-22. DOI: 10.1016/S0368-2048(97)00020-0.
https://doi.org/10.1016/S0368-2048(97)00020-0
5. Dybko K., Szuszkiewicz W. and Witkowska B. New semimagnetivc semiconductors: HgS doped with transition metals. Defect and Diffusion Forum. 1995. 121/122. P. 41-0. https://doi.org/10.4028/www.scientific.net/DDF.121-122.41.
https://doi.org/10.4028/www.scientific.net/DDF.121-122.41
6. Mews A., Kadavanich A.V., Banin U. and Alivisatos A.P. Structural and spectroscopic investigation of CdS/HgS/CdS quantum-dots quantum wells. Phys. Rev. B. 1996. 53, No 20. P. R13242-R13245. DOI: 10.1103/PhysRevB.53.R13242.
https://doi.org/10.1103/PhysRevB.53.R13242
7. Zallen R. and Slade M. Plasma edge and band structure of cubic HgS. Solid State Commun. 1970. 8, No 16. P. 1291-1294. DOI: 10.1016/0038-1098(70)90622-8.
https://doi.org/10.1016/0038-1098(70)90622-8
8. Szuszkiewicz W., Witkowska B., Jouanne M., and Balkanski M. Raman spectroscopy of cubic Hg1-xFexS. Mater. Sci. Forum. 1995. 182-184. P. 711-714.
https://doi.org/10.4028/www.scientific.net/MSF.182-184.711
9. Cardona M., Kremer R.K., Lauck R., Siegle G., Munoz A. and Romero A.H. Electronic, vibra-tional, and thermodynamic properties of metacinnabar β-HgS, HgSe, and HgTe Phys. Rev. B. 2009. 80, No 19. P. 195204. https://doi.org/10.1103/PhysRevB.80.195204.
https://doi.org/10.1103/PhysRevB.80.195204
10. Wei S.H. and Zunger A. Role of metal d states in II-VI semiconductors. Phys. Rev. B. 1988. 37, No 15. P. 8958. https://doi.org/10.1103/PhysRevB.37.8958.
https://doi.org/10.1103/PhysRevB.37.8958
11. Heda N.L., Mathur S., Ahuja B.L. and Sharma B.K. Compton profiles and band structure cal-culations of CdS and CdTe. phys. status solidi (b). 2007. 244, No 3. P. 1070-1081. https://doi.org/10.1002/pssb.200642308.
https://doi.org/10.1002/pssb.200642308
12. Ahuja B.L. and Heda N.L. Electron momentum density in ZnSe: Theory and Experiment. Radiation Physics and Chemistry. 2007. 76, No 6. P. 921-928. https://doi.org/10.1016/j.radphyschem.2007.01.006.
https://doi.org/10.1016/j.radphyschem.2007.01.006
13. Mahapatra A.K. and Dash A.K. α-HgS nanocrystals: synthesis, structure and optical properties. Physica E. 2006. 35. P. 9-15.
https://doi.org/10.1016/j.physe.2006.03.164
14. Xu X. and Carraway E.R. Sonication-assissted synthesis of β-mercuric sulphide nanoparticle. Nanomaterials and Nanotechnology. 2012. 2, Art. 17. https://doi.org/10.5772/55823.
https://doi.org/10.5772/55823
15. Khalilzadeh M. and Kangarlou H. Optical properties determination of mercury sulfide biological composites. International Journal of Biology, Pharmacy and Allied Science. 2015. 4, No 11. P. 187-193.
16. Patil H.B., Borse S.V. and Ahire R.R. Structural, optical and thermoelectrical properties of mercury chromium sulfide thin film deposition by novel chemical route. IOSR J. Appl. Phys. 2017. 9, No 3 Ver. II. P. 08-14. DOI: 10.9790/4861-0903020814.
https://doi.org/10.9790/4861-0903020814
17. Kale S.S. and Lokhande C.D. Preparation and Characterization of HgS films by chemical deposition. Mater. Chem. Phys. 1999. 59, No 3. P. 242-246. DOI: 10.1016/S0254-0584(99)00048-6.
https://doi.org/10.1016/S0254-0584(99)00048-6
18. Kale S.S., Pathan H.M. and Lokhande C.D. Thickness dependent photoelectrochemical cells performance of CdSe and HgS thin film. J. Mater. Sci. 2005 40. P. 2635-2637.
https://doi.org/10.1007/s10853-005-2093-6
19. Kreingol'd F.I. Sov. Phys. Solid State. 1963. 4. P. 1904.
20. Robert C.G., Lind E.L. and Davis E.A. Photoelectronic properties of synthetic mercury sulphide crystals. J. Phys. Chem. Solids. 1969. 30, No 4. 833-844. https://doi.org/10.1016/0022-3697(69)90279-0.
https://doi.org/10.1016/0022-3697(69)90279-0
21. Virot F., Hayn R., Richter M., van den Brink J. Metacinnabar (β-HgS): A strong 3D topological insulator with highly anisotropic surface states. Phys. Rev. Lett. 2011. 106, No 23. P. 236806-1-4. DOI: 10.1103/PhysRevLett.106.236806.
https://doi.org/10.1103/PhysRevLett.106.236806
22. Zallan R. in: II-IV Semiconducting Compounds, D.G. Thomas (Ed.). W.A. Benjamin, Inc., New York, 1967.
23. Bond W.L., Boyd G.D., and Carter H.L. Jr. Refractive Indices of HgS (Cinnabar) between 0.62 and 11 μ. J. Appl. Phys. 1967. 38. P. 4090. https://doi.org/10.1063/1.1709079.
https://doi.org/10.1063/1.1709079
24. Sapriel J. Cinnabar (α HgS), a promising acousto-otical material. Appl. Phys. Lett. 1971. 19. P. 533. https://doi.org/10.1063/1.1653802.
https://doi.org/10.1063/1.1653802
25. Eschrig H. Fundamentals of Density Functional Theory (Revised and extended version). 1996. P. 5. DOI: 10.1007/978-3-322-97620-8.
https://doi.org/10.1007/978-3-322-97620-8_7
26. Zein N.E. Density functional calculations of elastic moduli and phonon spectra of crystals. Sov. Phys. Solid State. 1984. 26. P. 1825.
27. Blat D.K., Zein N.E., and Zinenko V.I. Calculations of phonon frequencies and dielectric constants of alkali hydrides via the density functional method. J. Phys.: Condensed Matter. 1991. 3, No 29. P. 5515.
https://doi.org/10.1088/0953-8984/3/29/006
28. Zein N.E. Ab initio calculations of phonon dispersion curves. Application to Nb and Mo. Phys. Lett. A. 1992. 161, No 6. P. 526-530. https://doi.org/10.1016/0375-9601(92)91086-7.
https://doi.org/10.1016/0375-9601(92)91086-7
29. Baroni S., de Gironcoli S., Carso A. Dal and Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001. 73, No 2. P. 515. https://doi.org/10.1103/RevModPhys.73.515.
https://doi.org/10.1103/RevModPhys.73.515
30. Akinlami J.O., Odeyemi O.O. Electronic structure and optical properties of HgSe. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2018. 21, No 3. P. 288-293. https://doi.org/10.15407/spqeo21.03.288.
https://doi.org/10.15407/spqeo21.03.288
31. Jones R.O. Introduction to Density Functional Theory and Exchange-Correlation Energy Functionals. NIC Series. 2006. 31. P. 45-70. https://www.fz-juelich.de/nic-series/volume31.
32. Gonze X., Beuken J.M., Caracas R. et al. First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 2002. 25, No 3. P. 478-482.
https://doi.org/10.1016/S0927-0256(02)00325-7
33. Monkhorst H.J. and Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976. 13, No 12. P. 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188.
https://doi.org/10.1103/PhysRevB.13.5188
34. Shafaay B. Al, Hassan F. El Haj, Korek M. First principle investigation of mercury chalcogenides and their HgSxSe1-x and HgSxTe1-x ternary alloys. Computat. Mater. Sci. 2014. 83. P. 107-113.
https://doi.org/10.1016/j.commatsci.2013.10.044