Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 156-164 (2019).
DOI: https://doi.org/10.15407/spqeo22.02.156


References

1. Madelung O., Rossler U., Schulz M. (eds.) Non-Tetrahedrally Bonded Elements and Binary Compounds I. Landolt-Bornstein - Group III Condensed Matter (Numerical Data and Functional Relationships in Science and Technology), vol. 41C. Springer, Berlin, Heidelberg, 1988. DOI: 10.1007/10681727_890.
https://doi.org/10.1007/10681727_890
2. Eggleton B.J., Luther-Davies B., Richardson K. Chalcogenide photonics. Nature photonics. 2011. 5, No 3. P. 141.
https://doi.org/10.1038/nphoton.2011.309
3. Khokhlov D. Lead Chalcogenides: Physics and Applications. CRC Press, 2002.
4. Dughaish Z.H. Lead telluride as a thermoelectric material for thermoelectric power generation. Physica B: Condensed Matter. 2002. 322, No. 1-2. P. 205-223. DOI: 10.1016/S0921-4526(02)01187-0.
https://doi.org/10.1016/S0921-4526(02)01187-0
5. Haluschak M.O., Horichok I.V., Semko T.O., Mydryi S.I., Optasyuk S. Dzumedzey R.O. Thermoelectric properties of solid solutions PbSnAgTe. Physics and Chemistry of Solid State. 2017. 18, No 2. P. 211-214. DOI: 10.15330/pcss.18.2.211-214.
https://doi.org/10.15330/pcss.18.2.211-214
6. Kumar S., Khan Z.H., Khan M.M., Husain M. Studies on thin films of lead chalcogenides. Current Applied Physics. 2005. 5, No 6. P. 561-566. DOI: 10.1016/j.cap.2004.07.001.
https://doi.org/10.1016/j.cap.2004.07.001
7. Fu H., Tsang S.W. Infrared colloidal lead chalcogenide nanocrystals: synthesis, properties, and photovoltaic applications. Nanoscale. 2012. 4, No 7. P. 2187-2201. DOI: 10.1039/C2NR11836J.
https://doi.org/10.1039/c2nr11836j
8. Nykyruy L., Ruvinskiy M., Ivakin E., Kostyuk O., Horichok I., Kisialiou I., Yavorskyy Y. Hrubyak A. Low-dimensional systems on the base of PbSnAgTe (LATT) compounds for thermoelectric application. Physica E: Low-dimensional Systems and Nanostructures. 2019. 106. P. 10-18.DOI: 10.1016/j.physe.2018.10.020.
https://doi.org/10.1016/j.physe.2018.10.020
9. Rogacheva E.I., Nashchekina O.N., Tavrina T.V., Us M., Dresselhaus M.S., Cronin S.B., Rabin O. Quantum size effects in IV-VI quantum wells. Physica E: Low-dimensional Systems and Nanostructures. 2003. 17. P. 313-315.DOI: 10.1016/S1386-9477(02)00820-2.
https://doi.org/10.1016/S1386-9477(02)00820-2
10. Delin A., Ravindran P., Eriksson O., Wills J.M. Full-potential optical calculations of lead chalcogenides. International Journal of Quantum Chemistry. 1988. 69. P. 349.DOI: 10.1002/(SICI)1097-461X(1998)69:3<349::AID-QUA13>3.0.CO;2-Y.
https://doi.org/10.1002/(SICI)1097-461X(1998)69:3<349::AID-QUA13>3.0.CO;2-Y
11. Vlasenko O.I., Levytsky S.M., Krys'kov Ts.A., Kyselyuk M.P. Thermoelectric properties of PbSe and PbS compounds. Physics and Chemistry of Solid State. 2006. 7, No 4. P. 660.
12. Ravindra N.M., Srivastava V.K. Properties of PbS, PbSe, and PbTe. phys. status solidi (a). 1980. 58. P. 311. DOI: 10.1002/pssa.2210580139.
https://doi.org/10.1002/pssa.2210580139
13. Snyder G.J., Toberer E.S. Complex thermoelectric materials. Nature materials. 2008. 7. P. 105-114. DOI: 10.1038/nmat2090.
https://doi.org/10.1038/nmat2090
14. Horichok I.V., Nykyruy L.I., Galushchak M.O., Mudrij S.I., Semko T.O., Megilovska L.J., Gatala I.S., Yurchyshyn L.D. Synthesis and thermoelectric properties of PbTe-SnTe solid solutions. Physics and Chemistry of Solid State. 2016. 17, No 4. P. 570-574. DOI: 10.15330/pcss.17.4.570-574.
https://doi.org/10.15330/pcss.17.4.570-574
15. Dow H.S., Oh M.W., Park S.D., Kim B.S., Min B.K., Lee H.W., Wee D.M. Thermoelectric properties of AgPbmSbTem+2 (12 ≤ m ≤ 26) at elevated temperature. J. Appl. Phys. 2009. 105. P. 113703. DOI: 10.1063/1.3138803.
https://doi.org/10.1063/1.3138803
16. Horichok I., Ahiska R., Freik D., Nykyruy L., Mudry S., Matkivskiy O., Semko T. Phase content and thermoelectric properties of optimized thermoelectric structures based on the Ag-Pb-Sb-Te system. J. Electron. Mater. 2016. 45. P. 1576-1583. DOI: 10.1007/s11664-015-4122-9.
https://doi.org/10.1007/s11664-015-4122-9
17. Ren Y.X., Dai T.J., He B., Liu X.Z. Improvement on performances of graphene-PbSe Schottky photodetector via oxygen-sensitization of PbSe. Mater. Lett. 2019. 236. P. 194-196. DOI: 10.1016/j.matlet.2018.10.045.
https://doi.org/10.1016/j.matlet.2018.10.045
18. Virt I.S., Rudyi I.O., Lopatynskyi I.Ye., Dubov Yu., Tur Y., Lusakowska E., Luka G. J. Electron. Mater. 2017. 46, No 1. P. 175. DOI: 10.1007/s11664-016-4903-9.
https://doi.org/10.1007/s11664-016-4903-9
19. Granovsky Alex A., Firefly version 8, http://classic.chem.msu.su/gran/firefly/index.html.
20. Stevens W.J., Basch H., Krauss M. Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. J. Chem. Phys. 1984. 81. P. 6026. DOI: 10.1063/1.447604.
https://doi.org/10.1063/1.447604
21. Becke A.D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993. 98, No 2. P. 1372. DOI: 10.1063/1.464304.
https://doi.org/10.1063/1.464304
22. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. 37, No 2. P. 785. DOI: 10.1103/PhysRevB.37.785.
https://doi.org/10.1103/PhysRevB.37.785
23. Horichok I.V., Nykyruy L.I., Parashchuk T.O., Bardashevska D., Pylyponuk M.P. Thermodynamics of defect subsystem in zinc telluride crystals. Modern Phys. Lett. B. 2016. 30, No 16. P. 1650172.DOI: 10.1142/S0217984916501724.
https://doi.org/10.1142/S0217984916501724
24. Naydych B. Calculation of the stability and rebuilding of the crystal surface within DFT-calculations. Physics and Chemistry of Solid State. 2018. 19, No 3. P. 254-257. DOI: 10.15330/pcss.19.3.254-257.
https://doi.org/10.15330/pcss.19.3.254-257
25. Nykyruy L.I., Parashchuk T.O., Volochanska B.P. Thermodynamic parameters of lead sulfide crystals in the cubic phase. Chalcogenide Lett. 2016. 13, No 6. P. 239.
https://doi.org/10.15330/jpnu.3.1.15-22
26. Wang H., Pei Y., LaLonde A.D., Snyder G.J. Heavily doped p-type PbSe with high thermoelectric performance: An alternative for PbTe. Adv. Mater. 2011. 23, P. 1366. DOI: 10.1002/adma.201004200.
https://doi.org/10.1002/adma.201004200
27. Freik D., Parashchuk T., Volochanska B. Thermodynamic parameters of CdTe crystals in the cubic phase. J. Crystal Growth. 402. P. 90.http://dx.doi.org/10.1016/j.jcrysgro.2014.05.005.
https://doi.org/10.1016/j.jcrysgro.2014.05.005
28. Freik D.M., Parashchuk T.O., Volochanska B.P., Duchenko I.V. Heat capacity and Debye temperature of CdTe, CdSe crystals. Physics and Chemistry of Solid State. 2014. 15, No 2. P. 282.
29. Volkov B.A. Electronic properties of IV-VI narrow-band semiconductors. Physics-Uspekhi. 2003. 173, No 9. P. 1013.
https://doi.org/10.3367/UFNr.0173.200309j.1013
30. Yong D.C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. New-York: Wiley J.& Sons, Inc., 2001.
https://doi.org/10.1002/0471220655
31. Sun X., Gao K., Pang X., Yang H. Interface and strain energy revolution texture map to predict structure and optical properties of sputtered PbSe thin films. ACS Applied Materials & Interfaces. 2015. 8, No 1. P. 625-633. DOI: 10.1021/acsami.5b09724.
https://doi.org/10.1021/acsami.5b09724
32. Chandrasekharan V., Walmsley S.H. The rigid molecule approximation in lattice dynamics. Molecular Physics. 1977. 33, No. 2. P. 573. DOI: 10.1080/00268977700100491.
https://doi.org/10.1080/00268977700100491
33. Haynes W.M. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data. CRC Press, Boca Raton, Fla, 2010.
34. Tritt T.M. Thermal Conductivity: Theory, Properties, and Applications. Springer, Science & Business Media, 2005.
https://doi.org/10.1007/b136496
35. Stöber D., Hildmann B.O., Böttner H., Scheib S., Bachem K.H., Binnewies M. Chemical transport reactions during crystal growth of PbTe and PbSe via vapour phase influenced by AgI. J. Crystal Growth. 1992. 121. P. 656-664. DOI: 10.1016/0022-0248(92)90572-Z.
https://doi.org/10.1016/0022-0248(92)90572-Z
36. Parkinson D.H., Quarrington J.E. The molar heats of lead sulphide, selenide and telluride in the temperature range 20 K to 260 K. Proc. Phys. Soc., London, Sect. A. 1954. 67. P. 569-579. DOI: 10.1088/0370-1298/67/7/301.
https://doi.org/10.1088/0370-1298/67/7/301
37. Sadykov K.B., Semenkovich S.A. Study of the thermodynamic properties of lead selenide by the electromotive force method. Izv. Akad. Nauk Turkmen. SSR, Ser. Fiz.-Tekh. Khim. Geol. Nauk. 1966. 3. P. 25-28 (in Russian).
38. Cox J.D., Wagman D.D., Medvedev V.A., CODATA Key Values for Thermodynamics. Hemisphere Publ. Corp., New York, 1989.
39. Robie R.A., Hemingway B.S., Fisher J.R. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. United States Government Printing Office, Washington, 1978.
40. Pashinkin A.S., Mikhailova M.S., Malkova A.S., Fedorov V.A. Heat capacity and thermodynamic properties of lead selenide and lead telluride. Inorganic Materials. 2009. 45, No 11. P. 1226-1229. DOI: 10.1134/S0020168509110065.
https://doi.org/10.1134/S0020168509110065
41. Shamsuddin Misra S. Thermodynamic properties of lead selenide. Scr. Metal. 1973. 7. P. 547-554. DOI: 10.1016/0036-9748(73)90110-5.
https://doi.org/10.1016/0036-9748(73)90110-5
42. Blachnik R., Igel R. Thermodynamische Eigen-schaften von IV-VI-Verbindungen: Bleichalko-genide. Z. Naturforsch. 1974. 29b. P. 625-629. DOI: 10.1515/znb-1974-9-1012.
https://doi.org/10.1515/znb-1974-9-1012
43. Kiran B., Kandalam Anil K., Rallabandi R. et al. (PbS)32: A baby crystal. J. Chem. Phys. 2012. 136. P. 024317. DOI: 10.1063/1.3672166.
https://doi.org/10.1063/1.3672166
44. Sun Q., Wang Y., Yuan X., Han J., Ma Q., Li F., Jin H., Liu Z. Preparation of PbS nano-microcrystals with different morphologies and their optical properties. Cryst. Res. Technol. 2013. 48, No 9. P. 627. DOI: 10.1002/crat.201300189.
https://doi.org/10.1002/crat.201300189
45. Littlewood P.B. Physics of Narrow Gap Semiconductors. Proc. 4th Intern. Conf. on Physics of Narrow Gap Semiconductors. Linz, Austria, 1981.
46. Toberer E.S., Zevalkink A., Snyder G.J. Phonon engineering through crystal chemistry. J. Mater. Chem. 2011. 21, No 40. P. 15843-15852. DOI: 10.1039/C1JM11754H.
https://doi.org/10.1039/c1jm11754h
47. An J., Subedi A., Singh D.J. Ab initio phonon dispersions for PbTe. Solid State Commun. 2008. 148, No 9-10. P. 417-419.
https://doi.org/10.1016/j.ssc.2008.09.027