Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 171-181 (2019).
DOI: https://doi.org/10.15407/spqeo22.02.171


References

1. Fortov V.E., Sharkov B.Yu., Stocker H. European Facility for Antiproton and Ion Research (FAIR): the new international center for fundamental physics and its research program. Phys. Usp. 2012. 55, No 6. P. 582-602. DOI: 10.3367/UFNr.0182.201206c.0621.
https://doi.org/10.3367/UFNr.0182.201206c.0621
2. Fischer D., Gudmundsson M., Berenyi Z., Haag N. Importance of Thomas single-electron transfer in fast p-He collisions. Phys. Rev. A. 2010. 81. P. 012714. DOI: 10.1103/PhysRevA.81.012714.
https://doi.org/10.1103/PhysRevA.81.012714
3. Schöffler M.S., Titze J.N., Schmidt L.Ph.H., Jahnke T., Jagutzki O., Schmidt-Böcking H., and Dörner R. Collision dynamics in electron-capture processes with excitation. Phys. Rev. A. 80. 2009. P. 042702. DOI: 10.1103/PhysRevA.80.042702.
https://doi.org/10.1103/PhysRevA.80.042702
4. Thomas L.H. On the capture of electrons by moving electrified particles. Proc. Roy. Soc. A. 1927. 114. P. 561-576. DOI: 10.1098/rspa.1927.0058.
https://doi.org/10.1098/rspa.1927.0058
5. Belkic D., Mancev I., Hanssen J. Four-body methods for high-energy ion-atom collisions. Rev. Mod. Phys. 2008. 80. P. 249-314. DOI: 10.1103/RevModPhys.80.249.
https://doi.org/10.1103/RevModPhys.80.249
6. Lazur V.Yu., Khoma M.V. Distorted wave theories for one- and two-electron capture in fast atomic collisions. Chap. 13, in: Advances in Quantum Chemistry (Ed. D. Belkic). 2013. 65. P. 363-405. DOI: 10.1016/B978-0-12-396455-7.00013-3.
https://doi.org/10.1016/B978-0-12-396455-7.00013-3
7. Lazur V.Yu., Aleksiy V.V., Karbovanets M.I., Myhalyna S.I. Green's functions method in the reactions of a single-electron charge-exchange. Uzhhorod University Scientific Herald. Series Physics. 2017. 41. P. 85-93. DOI: 10.24144/2415-8038.2017.41.85-93.
https://doi.org/10.24144/2415-8038.2017.41.85-93
8. Lazur V.Yu., Aleksiy V.V., Karbovanets M.I., Myhalyna S.I. Continuum distorted-wave method in the two-electron charge exchange theory. Uzhhorod University Scientific Herald. Series Physics. 2017. 42. P. 137-152. DOI: 10.24144/2415-8038.2017.42.137-152.
https://doi.org/10.24144/2415-8038.2017.42.137-152
9. Merkuriev S.P., Faddeev L.D. Quantum Scattering Theory for Several Particle Systems. Dordrecht, Springer, 1993. DOI: 10.1007/978-94-017-2832-4.
https://doi.org/10.1007/978-94-017-2832-4
10. Lazur V.Yu., Khoma M.V., Janev R.K. Asymptotic properties of the three-Coulomb-center problem eZ1ZZ. Phys. Rev. A. 2006. 73. P. 032723. DOI: 10.1103/PhysRevA.73.032723.
https://doi.org/10.1103/PhysRevA.73.032723
11. Khoma M.V., Lazur V.Yu., Janev R.K. Asymptotic theory of the one- and two-electron processes in slow collisions of atomic ions with diatomic molecules. Phys. Rev. A. 2009. 80. P. 032706. DOI: 10.1103/PhysRevA.80.032706.
https://doi.org/10.1103/PhysRevA.80.032706
12. Dodd L.R., Greider K.R. Rigorous solution of three-body scattering processes in the distorted-wave formalism. Phys. Rev. A. 1966. 146. P. 675-686. DOI: 10.1103/PhysRev.146.675.
https://doi.org/10.1103/PhysRev.146.675
13. Lazur V.Yu., Khalus L.M. Dodd-Graider integral equation in the charge exchange problem. Uzhhorod University Scientific Herald. Series Physics. 1999. 4. P. 86-93.
https://doi.org/10.24144/2415-8038.1999.4.86-93
14. Lazur V.Yu., Aleksiy V.V., Myhalyna S.І. Accounting the effects of electron re-scattering in the single-electron charge-exchange reaction. Uzhhorod University Scientific Herald. Series Physics. 2017. 41. P. 103-111. DOI: 10.24144/2415-8038.2017.41.103-111.
https://doi.org/10.24144/2415-8038.2017.41.103-111
15. Greider K.R., Dodd L.R. Divergence of the distorted-wave Born series for rearrangement scattering. Phys. Rev. A. 1966. 146. P. 671-675. DOI: 10.1103/PhysRev.146.671.
https://doi.org/10.1103/PhysRev.146.671
16. Faddeev L.D. Scattering theory for a three-particle system. ZhETF. 1961. 12, No 5. P. 1014-1019 (in Russian). [World Scientific Series in 21st Century Mathematics Fifty Years of Mathematical Physics. 2016. P. 37-42. DOI: 10.1142/9789814340960_0004.]
https://doi.org/10.1142/9789814340960_0004
17. Belkic Dz., Gayet R., Salin A. Electron capture in high-energy ion-atom collisions. Phys. Rep. 1979. 56, No 6. 279-369. DOI: 10.1016/0370-1573(79)90035-8.
https://doi.org/10.1016/0370-1573(79)90035-8
18. Lendel V.I., Lazur V.Yu., Karbovanets M.I., Janev R.K. Introduction to the Theory of Atomic Collisions. Lviv, Vishcha shkola, 1989.
19. Lazur V.Yu., Khalus L.M. First Born approximation with distorted waves. Uzhhorod University Scientific Herald. Series Physics. 2000. 6. P. 145-154. DOI: 10.24144/2415-8038.2000.6.145-154.
https://doi.org/10.24144/2415-8038.2000.6.145-154
20. Bateman H., Erdelyi А. Higher Transcendental Functions, Vol. 2. Moscow, Nauka, 1974.
21. Cheshire I.M. Continuum distorted wave approximation; resonant charge transfer by fast protons in atomic hydrogen. Proc. Phys. Soc. 1964. 84. P. 89-98. DOI: 10.1088/0370-1328/84/1/313.
https://doi.org/10.1088/0370-1328/84/1/313
22. Gayet R. Charge exchange scattering amplitude to first order of a three body expansion. J. Phys. B. 1972. 5. P. 483-491. DOI: 10.1088/0022-3700/5/3/013.
https://doi.org/10.1088/0022-3700/5/3/013
23. Horsdal-Pedersen E., Cocke C.L., Stockli M. Experimental observation of the Thomas peak in high-velocity electron capture by protons from He. Phys. Rev. Lett. 1983. 50, No 24. P. 1910-1913. DOI: https://doi.org/10.1103/PhysRevLett.50.1910.
https://doi.org/10.1103/PhysRevLett.50.1910
24. Martin P.J., Blankenship D.M., Klave T.J. Electron capture at very small scattering angles from atomic hydrogen by 25-125-keV protons. Phys. Rev. A. 1981. 23, No 6. P. 3357-3360. DOI: 10.1103/PhysRevA.23.3357.
https://doi.org/10.1103/PhysRevA.23.3357