Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 182-187 (2019).
DOI: https://doi.org/10.15407/spqeo22.02.182


References

1. Kuhs W.F., Nitsche R., Scheunemann K. The argyrodites - a new family of the tetrahedrally close-packed structures. Mat. Res. Bull. 1979. 14, No 2. P. 241-248.
https://doi.org/10.1016/0025-5408(79)90125-9
2. Nilges T., Pfitzner A. A structural differentiation of quaternary copper argyrodites: Structure - property relations of high temperature ion conductors. Z. Kristallogr. 2005. 220. P. 281-294. https://doi.org/10.1524/zkri.220.2.281.59142.
https://doi.org/10.1524/zkri.220.2.281.59142
3. Studenyak I.P., Kranjčec M., Kovacs Gy.Sh., Panko V.V., Mitrovcij V.V., Mikajlo O.A. Structural disordering studies in Cu6+PS5I single crystals. Mater. Sci. Eng. 2003. B97. P.34-38. https://doi.org/10.1016/S0921-5107(02)00392-6.
https://doi.org/10.1016/S0921-5107(02)00392-6
4. Gagor A., Pietraszko A., Kaynts D. Diffusion paths formation for Cu+ ions in superionic Cu6PS5I single crystals studied in terms of structural phase transition. J. Solid State Chem. 2005. 178. P. 3366-3375. https://doi.org/10.1016/j.jssc.2005.08.015.
https://doi.org/10.1016/j.jssc.2005.08.015
5. Andrae H., Blachnik R. Metal sulphide-tetraphosphorusdecasulphide phase diagrams. J. Alloys and Compounds. 1992. 189. P. 209-215. https://doi.org/10.1016/0925-8388(92)90709-I.
https://doi.org/10.1016/0925-8388(92)90709-I
6. Fiechter S., Gmelin E. Thermochemical data and phase transition of argyrodite-type ionic conductors Me6PS5Hal and Me7PS6 (Me = Cu, Ag; Hal = Cl, Br, I). Thermochimica Acta. 1985. 87. P. 319-334. https://doi.org/10.1016/0040-6031(85)85351-X.
https://doi.org/10.1016/0040-6031(85)85351-X
7. Studenyak I.P., Izai V.Yu, Pogodin A.I., Kokhan O.P., Sidey V.I., Sabov M.Yu., Kežionis A., Šalkus T., Banys J. Structural and electrical properties of argyrodite-type Cu7PS6 crystal. Lithuanian Journal of Physics. 2017. 57. P. 243-251. DOI: 10.3952/physics.v57i4.3603.
https://doi.org/10.3952/physics.v57i4.3603
8. Orliukas A.F., Kazakevicius E., Kezionis A., Salkus T., Studenyak I.P., Buchuk R.Yu., Prits I.P., Panko V.V. Preparation, electric conductivity and dielectrical properties of Cu6PS5I-based superionic composites. Solid State Ionics. 2009. 180. P. 183-186. https://doi.org/10.1016/j.ssi.2008.12.005.
https://doi.org/10.1016/j.ssi.2008.12.005
9. Studenyak I.P., Izai V.Yu., Studenyak V.I., Kovalchuk O.V., Kovalchuk T.M., Kopčanský P., Timko M., Tomašovičová N., Zavisova V., Miskuf J., Oleinikova I.V. Influence of Cu6PS5І superionic nanoparticles on the dielectric properties of 6СВ liquid crystal. Liquid Crystals. 2017. 44. P. 897-903. https://doi.org/10.1080/02678292.2016.1254288.
https://doi.org/10.1080/02678292.2016.1254288
10. Izai V.Yu., Studenyak V.I., Pogodin A.I., Studenyak I.P., Rajňák M., Kurimsky J., Timko M., Kopčanský P. Electrical and dielectrical properties of composites based on (Ag1-xCux)7GeS5I mixed crystals. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2018. 21, No 4. P. 387-391. https://doi.org/10.15407/spqeo21.04.387.
https://doi.org/10.15407/spqeo21.04.387