Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 224-230 (2019).
DOI: https://doi.org/10.15407/spqeo22.02.224


References

1. Boudebs G. and Fedus K. Absolute measurement of the nonlinear refractive indices of reference materials. J. Appl. Phys. 2009. 105. 103106 (5p). https://doi.org/10.1063/1.3129680.
https://doi.org/10.1063/1.3129680
2. Ganeev R.A., Ryasnyanskii A.I., and Kuroda H. Nonlinear Optical Characteristics of Carbon Disul-fide. Optics and Spectroscopy. 2006. 100, No. 1. P. 108-118. DOI: 10.1134/S0030400X0601019X.
https://doi.org/10.1134/S0030400X0601019X
3. Fripiat J.G., Barbier C., Bodart V.P., and Andre J.M. Calculations of first- and second-order nonlinear molecular hyperpolarizabilities by perturbation methods: I. An efficient method for evaluating time-independent hyperpolarizabilities. J. Comput. Chem. 1986. 7, No. 6. P. 756-760. https://doi.org/10.1002/jcc.540070608.
https://doi.org/10.1002/jcc.540070608
4. Shafei S., Kuzyk M.C., and Kuzyk M.G. Monte-Carlo studies of the intrinsic second hyperpolari-zability. J. Opt. Soc. Am. B. 2010. 27, No. 9. P. 1849-1856. DOI:10.1364/JOSAB.27.001849.
https://doi.org/10.1364/JOSAB.27.001849
5. Lytel R. Physics of the fundamental limits of nonlinear optics: a theoretical perspective [Invited]. J. Opt. Soc. Am. B. 2016. 33, No. 12. P. E66-E82. https://doi.org/10.1364/JOSAB.33.000E66.
https://doi.org/10.1364/JOSAB.33.000E66
6. Yan X.-Q., Liu Z.-B., Shi S. et al. Analysis on the origin of the ultrafast optical nonlinearity of carbon disulfide around 800 nm. Opt. Exp. 2010. 18, No. 25. P. 26169-26174. https://doi.org/10.1364/OE.18.026169.
https://doi.org/10.1364/OE.18.026169
7. Kong D. G., Chang Q., Ye H. et al. The fifth-order nonlinearity of CS2. Journal of Physics B: Atomic, Molecular and Optical Physics. 2009. 42. 065401 (4 p). DOI: 10.1088/0953-4075/42/6/065401.
https://doi.org/10.1088/0953-4075/42/6/065401
8. Yan X.-Q., Zhang X.-L., Shi S. et al. Third-order nonlinear susceptibility tensor elements of CS2 at femtosecond time scale. Opt. Exp. 2011. 19, No. 6. P. 5559-5564. https://doi.org/10.1364/OE.19.005559.
https://doi.org/10.1364/OE.19.005559
9. Li W., Tian W. Q., and Sun X. Understanding of nonlinear optical properties of CS2 from a microscopic viewpoint. J. Chem. Phys. 2012. 137. 084315 (7 p.). https://doi.org/10.1063/1.4748261.
https://doi.org/10.1063/1.4748261
10. Couris S., Renard M., Faucher O., Lavorel B., Chaux R., Koudoumas E., Michaut X. An expe-rimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spec-tral shearing interferometry and z-scan techniques. Chem. Phys. Lett. 2003. 369. P. 318-324. https://doi.org/10.1016/S0009-2614(02)02021-3.
https://doi.org/10.1016/S0009-2614(02)02021-3
11. Ganeev R.A., Ryasnyansky A.I., Baba M., Suzuki M., Ishizawa N., Turu M., Sakakibara S., Kuroda H. Nonlinear refraction in CS2. Appl. Phys. B. 2004. 78. P. 433-438. DOI: 10.1007/s00340-003-1389-y.
https://doi.org/10.1007/s00340-003-1389-y
12. Tseng D.C. and Poshusta R.D. Ab initio potential energy curves for low-lying states of carbon disulfide. J. Chem. Phys. 1994. 100. P. 7481-7486. https://doi.org/10.1063/1.466892.
https://doi.org/10.1063/1.466892
13. Orr B.J. & Ward J.F. Perturbation theory of the non-linear optical polarization of an isolated system. Molecular Physics - An International Journal at the Interface between Chemistry and Physics. 1971. 20, No. 3. P. 513-526. https://doi.org/10.1080/00268977100100481.
https://doi.org/10.1080/00268977100100481
14. Yariv A. The application of time evolution operators and Feynman diagrams to nonlinear optics. IEEE Journal of Quantum Electronics. 1977. QE-13, No. 12. P. 943-950. https://doi.org/10.1109/JQE.1977.1069267.
https://doi.org/10.1109/JQE.1977.1069267
15. Prior Y. A complete expression for the third-order susceptibility (χ(3)) - Perturbative and Diagrammatic Approaches. IEEE Journal of Quantum Electronics. 1984. QE-20, No. 1. P. 37-42. https://doi.org/ 10.1109/JQE.1984.1072262.
https://doi.org/10.1109/JQE.1984.1072262
16. Rozouvan S. Commutative spatial and time sym-metry of degenerate four-wave mixing measure-ments. J. Opt. Soc. Am. B: Opt. Phys. 1999. 16, No. 5. P. 768-773. https://doi.org/10.1364/JOSAB.16.000768.
https://doi.org/10.1364/JOSAB.16.000768
17. Rozouvan S. Broadband degenerate four-wave-mixing measurements. J. Opt. Soc. Am. B: Opt. Phys. 2000. 17. No. 8. P. 1354-1359. https://doi.org/10.1364/JOSAB.17.001354.
https://doi.org/10.1364/JOSAB.17.001354
18. Schrof W., Andreaus R., Moehwald H., Rozouvan S., Belov V., Van Keuren E., and Wakebe T. Nonlinear optics of polythiophene films. Molecular Crystals and Liquid Crystals Science and Technology Section B: Nonlinear Optics. 1999. 22(1-4). P. 295-300.
19. Bahaa E. A. Saleh, Bradley M. Jost, Hong-Bing Fei, and Malvin C. Teich entangled-photon virtual-state spectroscopy. Phys. Rev. Lett. 1998. 80, No. 16. P. 3483-3486. https://doi.org/10.1103/PhysRevLett.80.3483.
https://doi.org/10.1103/PhysRevLett.80.3483
20. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. 14. P. 1347-1363. https://doi.org/10.1002/jcc.540141112.
https://doi.org/10.1002/jcc.540141112
21. Griffith J.S. and Orgel L.E. Ligand-field theory. Quarterly Reviews, Chemical Society. 1957. 11. P. 381-393.
https://doi.org/10.1039/qr9571100381
22. McGlynn S.P., Rabalais J.W., McDonald J.R., and Scherr V.M. Electronic spectroscopy of isoelectronic molecules. II. Linear triatomic groupings containing sixteen valence electrons. Chem. Rev. 1971. 71, No. 1. P. 73-108. https://doi.org/10.1021/cr60269a004.
https://doi.org/10.1021/cr60269a004
23. Zhang Q. and Vaccaro P.H. Ab initio studies of electronically excited carbon disulfide. J. Phys. Chem. 1995. 99, No. 6. P. 1799-1813. https://doi.org/10.1021/j100006a024.
https://doi.org/10.1021/j100006a024