Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 224-230 (2019).
DOI:
https://doi.org/10.15407/spqeo22.02.224
References
1. Boudebs G. and Fedus K. Absolute measurement of the nonlinear refractive indices of reference materials. J. Appl. Phys. 2009. 105. 103106 (5p). https://doi.org/10.1063/1.3129680. https://doi.org/10.1063/1.3129680 | | 2. Ganeev R.A., Ryasnyanskii A.I., and Kuroda H. Nonlinear Optical Characteristics of Carbon Disul-fide. Optics and Spectroscopy. 2006. 100, No. 1. P. 108-118. DOI: 10.1134/S0030400X0601019X. https://doi.org/10.1134/S0030400X0601019X | | 3. Fripiat J.G., Barbier C., Bodart V.P., and Andre J.M. Calculations of first- and second-order nonlinear molecular hyperpolarizabilities by perturbation methods: I. An efficient method for evaluating time-independent hyperpolarizabilities. J. Comput. Chem. 1986. 7, No. 6. P. 756-760. https://doi.org/10.1002/jcc.540070608. https://doi.org/10.1002/jcc.540070608 | | 4. Shafei S., Kuzyk M.C., and Kuzyk M.G. Monte-Carlo studies of the intrinsic second hyperpolari-zability. J. Opt. Soc. Am. B. 2010. 27, No. 9. P. 1849-1856. DOI:10.1364/JOSAB.27.001849. https://doi.org/10.1364/JOSAB.27.001849 | | 5. Lytel R. Physics of the fundamental limits of nonlinear optics: a theoretical perspective [Invited]. J. Opt. Soc. Am. B. 2016. 33, No. 12. P. E66-E82. https://doi.org/10.1364/JOSAB.33.000E66. https://doi.org/10.1364/JOSAB.33.000E66 | | 6. Yan X.-Q., Liu Z.-B., Shi S. et al. Analysis on the origin of the ultrafast optical nonlinearity of carbon disulfide around 800 nm. Opt. Exp. 2010. 18, No. 25. P. 26169-26174. https://doi.org/10.1364/OE.18.026169. https://doi.org/10.1364/OE.18.026169 | | 7. Kong D. G., Chang Q., Ye H. et al. The fifth-order nonlinearity of CS2. Journal of Physics B: Atomic, Molecular and Optical Physics. 2009. 42. 065401 (4 p). DOI: 10.1088/0953-4075/42/6/065401. https://doi.org/10.1088/0953-4075/42/6/065401 | | 8. Yan X.-Q., Zhang X.-L., Shi S. et al. Third-order nonlinear susceptibility tensor elements of CS2 at femtosecond time scale. Opt. Exp. 2011. 19, No. 6. P. 5559-5564. https://doi.org/10.1364/OE.19.005559. https://doi.org/10.1364/OE.19.005559 | | 9. Li W., Tian W. Q., and Sun X. Understanding of nonlinear optical properties of CS2 from a microscopic viewpoint. J. Chem. Phys. 2012. 137. 084315 (7 p.). https://doi.org/10.1063/1.4748261. https://doi.org/10.1063/1.4748261 | | 10. Couris S., Renard M., Faucher O., Lavorel B., Chaux R., Koudoumas E., Michaut X. An expe-rimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spec-tral shearing interferometry and z-scan techniques. Chem. Phys. Lett. 2003. 369. P. 318-324. https://doi.org/10.1016/S0009-2614(02)02021-3. https://doi.org/10.1016/S0009-2614(02)02021-3 | | 11. Ganeev R.A., Ryasnyansky A.I., Baba M., Suzuki M., Ishizawa N., Turu M., Sakakibara S., Kuroda H. Nonlinear refraction in CS2. Appl. Phys. B. 2004. 78. P. 433-438. DOI: 10.1007/s00340-003-1389-y. https://doi.org/10.1007/s00340-003-1389-y | | 12. Tseng D.C. and Poshusta R.D. Ab initio potential energy curves for low-lying states of carbon disulfide. J. Chem. Phys. 1994. 100. P. 7481-7486. https://doi.org/10.1063/1.466892. https://doi.org/10.1063/1.466892 | | 13. Orr B.J. & Ward J.F. Perturbation theory of the non-linear optical polarization of an isolated system. Molecular Physics - An International Journal at the Interface between Chemistry and Physics. 1971. 20, No. 3. P. 513-526. https://doi.org/10.1080/00268977100100481. https://doi.org/10.1080/00268977100100481 | | 14. Yariv A. The application of time evolution operators and Feynman diagrams to nonlinear optics. IEEE Journal of Quantum Electronics. 1977. QE-13, No. 12. P. 943-950. https://doi.org/10.1109/JQE.1977.1069267. https://doi.org/10.1109/JQE.1977.1069267 | | 15. Prior Y. A complete expression for the third-order susceptibility (χ(3)) - Perturbative and Diagrammatic Approaches. IEEE Journal of Quantum Electronics. 1984. QE-20, No. 1. P. 37-42. https://doi.org/ 10.1109/JQE.1984.1072262. https://doi.org/10.1109/JQE.1984.1072262 | | 16. Rozouvan S. Commutative spatial and time sym-metry of degenerate four-wave mixing measure-ments. J. Opt. Soc. Am. B: Opt. Phys. 1999. 16, No. 5. P. 768-773. https://doi.org/10.1364/JOSAB.16.000768. https://doi.org/10.1364/JOSAB.16.000768 | | 17. Rozouvan S. Broadband degenerate four-wave-mixing measurements. J. Opt. Soc. Am. B: Opt. Phys. 2000. 17. No. 8. P. 1354-1359. https://doi.org/10.1364/JOSAB.17.001354. https://doi.org/10.1364/JOSAB.17.001354 | | 18. Schrof W., Andreaus R., Moehwald H., Rozouvan S., Belov V., Van Keuren E., and Wakebe T. Nonlinear optics of polythiophene films. Molecular Crystals and Liquid Crystals Science and Technology Section B: Nonlinear Optics. 1999. 22(1-4). P. 295-300. | | 19. Bahaa E. A. Saleh, Bradley M. Jost, Hong-Bing Fei, and Malvin C. Teich entangled-photon virtual-state spectroscopy. Phys. Rev. Lett. 1998. 80, No. 16. P. 3483-3486. https://doi.org/10.1103/PhysRevLett.80.3483. https://doi.org/10.1103/PhysRevLett.80.3483 | | 20. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. 14. P. 1347-1363. https://doi.org/10.1002/jcc.540141112. https://doi.org/10.1002/jcc.540141112 | | 21. Griffith J.S. and Orgel L.E. Ligand-field theory. Quarterly Reviews, Chemical Society. 1957. 11. P. 381-393. https://doi.org/10.1039/qr9571100381 | | 22. McGlynn S.P., Rabalais J.W., McDonald J.R., and Scherr V.M. Electronic spectroscopy of isoelectronic molecules. II. Linear triatomic groupings containing sixteen valence electrons. Chem. Rev. 1971. 71, No. 1. P. 73-108. https://doi.org/10.1021/cr60269a004. https://doi.org/10.1021/cr60269a004 | | 23. Zhang Q. and Vaccaro P.H. Ab initio studies of electronically excited carbon disulfide. J. Phys. Chem. 1995. 99, No. 6. P. 1799-1813. https://doi.org/10.1021/j100006a024. https://doi.org/10.1021/j100006a024 | |
|
|