Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 231-236 (2019).
DOI:
https://doi.org/10.15407/spqeo22.02.231
References
1. Zhang A., Zheng G., Lieber C., Nanowires. Building Blocks for Nanoscience and Nanotechnology. Springer, Switzerland, 2016. DOI: 10.1007/978-3-319-41981-7. https://doi.org/10.1007/978-3-319-41981-7 | | 2. Li Y., Qian F., Xiang J., Lieber C.M. Nanowire electronic and optoelectronic devices. Materials Today. 2006. 9, No 10. P. 18-27. DOI: 10.1016/S1369-7021(06)71650-9. https://doi.org/10.1016/S1369-7021(06)71650-9 | | 3. Dubrovskii V.G., Cirlin G.E., Ustinov V.M. Semiconductor nanowhiskers: Synthesis, properties, and applications. Semiconductors. 2009. 43, No. 12. P. 1539-1584. DOI: 10.1134/S106378260912001X. https://doi.org/10.1134/S106378260912001X | | 4. Pachauri V., Kern K., Balasubramanian K. Field-effect-based chemical sensing using nanowire-nanoparticle hybrids: The ion-sensitive metal-semiconductor field-effect transistor. Appl. Phys. Lett. 2013. 102, No 2. 023501 (9 p). DOI: 10.1063/1.4775579. https://doi.org/10.1063/1.4775579 | | 5. Huang Y., Duan X., Lieber C.M. Nanowires for integrated multicolor nanophotonics. Small. 2005. 1, No 1. P. 142-147. DOI: 10.1002/smll.200400030. https://doi.org/10.1002/smll.200400030 | | 6. Couteau C., Larrue A., Wilhelm C., Soci C. Nanowire lasers. Nanophotonics. 2015. 4. P. 90-107. DOI: 10.1515/nanoph-2015-0005. https://doi.org/10.1515/nanoph-2015-0005 | | 7. Li L., Lou Z., Shen G. Hierarchical CdS nanowires based rigid and flexible photodetectors with ultrahigh sensitivity. ACS Appl. Mater. Interfaces. 2015. 7, No.42. P. 23507-23514. DOI: 10.1021/acsami.5b06070. https://doi.org/10.1021/acsami.5b06070 | | 8. Zhu L., Feng C., Li F., Zhang D., Li C., Wang Y., Lin Y., Ruan S., Chen Z. Excellent gas sensing and optical properties of single-crystalline cadmium sulfide nanowires. RSC Adv. 2014. 4, No 106. P. 61691-61697. DOI: 10.1039/C4RA11010B. https://doi.org/10.1039/C4RA11010B | | 9. Ramgir N.S., Yang Y., Zacharias M. Nanowire-based sensors. Small. 2010. 6, No 16. P. 1705-1722. DOI: 10.1002/smll.201000972. https://doi.org/10.1002/smll.201000972 | | 10. Patolsky F., Lieber C.M. Nanowire nanosensors. Materials Today. 2005. 8, No 4. P. 20-28. DOI: 10.1016/S1369-7021(05)00791-1. https://doi.org/10.1016/S1369-7021(05)00791-1 | | 11. Garnett E.C., Brongersma M.L., Cui Y., McGehee M.D. Nanowire solar cells. Annu. Rev. Mater. Res. 2011. 41. P. 269-295. DOI: 10.1146/annurev-matsci-062910-100434. https://doi.org/10.1146/annurev-matsci-062910-100434 | | 12. Agata M., Kurase H., Hayashi S., Yamamoto K. Photoluminescence spectra of gas-evaporated CdS microcrystals. Solid State Commun. 1990. 76, No 8. P. 1061-1065. DOI: 10.1016/0038-1098(90)90084-O. https://doi.org/10.1016/0038-1098(90)90084-O | | 13. Artemyev M.V., Sperling V., Woggon U. Electroluminescence in thin solid films of closely packed CdS nanocrystals. J. Appl. Phys. 1997. 81, No 10. P. 6975-6977. DOI: 10.1063/1.365261. https://doi.org/10.1063/1.365261 | | 14. Li H., Wang X., Xu J., Zhang Q., Bando Y., Golberg D., Ma Y., Zhai T. One-dimensional CdS nanostructures: A promising candidate for optoelectronics. Adv. Mater. 2013. 25. P. 3017-3037. DOI: 10.1002/adma.201300244. https://doi.org/10.1002/adma.201300244 | | 15. Georgobiani A.N., Sheynkman M.K. (eds.) The Physics of AIIBVI Compounds. Moscow, Nauka, 1986 (in Russian). | | 16. Grynko D.A., Fedoryak A.N., Dimitriev O.P., Lin A., Laghumavarapu R.B., Huffaker D.L. Growth of CdS nanowire crystals: Vapor-liquid-solid versus vapor-solid mechanisms. Surface and Coatings Technology. 2013. 230. P. 234-238. DOI: 10.1016/j.surfcoat.2013.06.058. https://doi.org/10.1016/j.surfcoat.2013.06.058 | | 17. Sears G.W. A mechanism of whisker growth. Acta Metal. 1955. 3. P. 367-369. DOI: 10.1016/0001-6160(55)90042-0. https://doi.org/10.1016/0001-6160(55)90042-0 | | 18. Grynko D.O., Fedoryak A.N., Smertenko P.S., Dimitriev O.P., Ogurtsov N.A., Pud A.A. Hybrid solar cell on a carbon fiber. Nanoscale Res. Lett. 2016. 11, No 1. P. 265-274. DOI: 10.1186/s11671-016-1469-7. https://doi.org/10.1186/s11671-016-1469-7 | | 19. Liu W., Jia C., Jin C., Yao L., Cai W., Li X. Growth mechanism and photoluminescence of CdS nanobelts on Si substrate. J. Cryst. Growth. 2004. 269, No 2-4. P. 304-309. DOI: 10.1016/j.jcrysgro.2004.05.093. https://doi.org/10.1016/j.jcrysgro.2004.05.093 | | 20. Mochizuki K., Satoh M., Igaki K. Orange luminescence in CdS. Jpn. J. Appl. Phys. 1983. 22, No. 9. P. 1414-1417. DOI: 10.1143/JJAP.22.1414. https://doi.org/10.1143/JJAP.22.1414 | | 21. Veamatahau A., Jiang B., Seifert T. et al. Origin of surface trap states in CdS quantum dots: Relationship between size dependent photoluminescence and sulfur vacancy trap states. Phys. Chem. Chem. Phys. 2015. 17. P. 2850-2858. DOI: 10.1039/C4CP04761C. https://doi.org/10.1039/C4CP04761C | | 22. Liang S., Li M., Wang J.-H., Liu X.-L., Hao Z.-H., Zhou L., Yu X.-F., Wang Q.-Q. Silica-coated and annealed CdS nanowires with enhanced photoluminescence. Opt. Exp. 2013. 21, No 3. P. 3253-3258. DOI: 10.1364/OE.21.003253. https://doi.org/10.1364/OE.21.003253 | | 23. Liu B., Chen R., Xu X.L. et al. Exciton-related photoluminescence and lasing in CdS nanobelts. J. Phys. Chem. C. 2011. 115. P. 12826-12830. DOI: 10.1021/jp203551f. https://doi.org/10.1021/jp203551f | |
|
|