Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 231-236 (2019).
DOI: https://doi.org/10.15407/spqeo22.02.231


References

1. Zhang A., Zheng G., Lieber C., Nanowires. Building Blocks for Nanoscience and Nanotechnology. Springer, Switzerland, 2016. DOI: 10.1007/978-3-319-41981-7.
https://doi.org/10.1007/978-3-319-41981-7
2. Li Y., Qian F., Xiang J., Lieber C.M. Nanowire electronic and optoelectronic devices. Materials Today. 2006. 9, No 10. P. 18-27. DOI: 10.1016/S1369-7021(06)71650-9.
https://doi.org/10.1016/S1369-7021(06)71650-9
3. Dubrovskii V.G., Cirlin G.E., Ustinov V.M. Semiconductor nanowhiskers: Synthesis, properties, and applications. Semiconductors. 2009. 43, No. 12. P. 1539-1584. DOI: 10.1134/S106378260912001X.
https://doi.org/10.1134/S106378260912001X
4. Pachauri V., Kern K., Balasubramanian K. Field-effect-based chemical sensing using nanowire-nanoparticle hybrids: The ion-sensitive metal-semiconductor field-effect transistor. Appl. Phys. Lett. 2013. 102, No 2. 023501 (9 p). DOI: 10.1063/1.4775579.
https://doi.org/10.1063/1.4775579
5. Huang Y., Duan X., Lieber C.M. Nanowires for integrated multicolor nanophotonics. Small. 2005. 1, No 1. P. 142-147. DOI: 10.1002/smll.200400030.
https://doi.org/10.1002/smll.200400030
6. Couteau C., Larrue A., Wilhelm C., Soci C. Nanowire lasers. Nanophotonics. 2015. 4. P. 90-107. DOI: 10.1515/nanoph-2015-0005.
https://doi.org/10.1515/nanoph-2015-0005
7. Li L., Lou Z., Shen G. Hierarchical CdS nanowires based rigid and flexible photodetectors with ultrahigh sensitivity. ACS Appl. Mater. Interfaces. 2015. 7, No.42. P. 23507-23514. DOI: 10.1021/acsami.5b06070.
https://doi.org/10.1021/acsami.5b06070
8. Zhu L., Feng C., Li F., Zhang D., Li C., Wang Y., Lin Y., Ruan S., Chen Z. Excellent gas sensing and optical properties of single-crystalline cadmium sulfide nanowires. RSC Adv. 2014. 4, No 106. P. 61691-61697. DOI: 10.1039/C4RA11010B.
https://doi.org/10.1039/C4RA11010B
9. Ramgir N.S., Yang Y., Zacharias M. Nanowire-based sensors. Small. 2010. 6, No 16. P. 1705-1722. DOI: 10.1002/smll.201000972.
https://doi.org/10.1002/smll.201000972
10. Patolsky F., Lieber C.M. Nanowire nanosensors. Materials Today. 2005. 8, No 4. P. 20-28. DOI: 10.1016/S1369-7021(05)00791-1.
https://doi.org/10.1016/S1369-7021(05)00791-1
11. Garnett E.C., Brongersma M.L., Cui Y., McGehee M.D. Nanowire solar cells. Annu. Rev. Mater. Res. 2011. 41. P. 269-295. DOI: 10.1146/annurev-matsci-062910-100434.
https://doi.org/10.1146/annurev-matsci-062910-100434
12. Agata M., Kurase H., Hayashi S., Yamamoto K. Photoluminescence spectra of gas-evaporated CdS microcrystals. Solid State Commun. 1990. 76, No 8. P. 1061-1065. DOI: 10.1016/0038-1098(90)90084-O.
https://doi.org/10.1016/0038-1098(90)90084-O
13. Artemyev M.V., Sperling V., Woggon U. Electroluminescence in thin solid films of closely packed CdS nanocrystals. J. Appl. Phys. 1997. 81, No 10. P. 6975-6977. DOI: 10.1063/1.365261.
https://doi.org/10.1063/1.365261
14. Li H., Wang X., Xu J., Zhang Q., Bando Y., Golberg D., Ma Y., Zhai T. One-dimensional CdS nanostructures: A promising candidate for optoelectronics. Adv. Mater. 2013. 25. P. 3017-3037. DOI: 10.1002/adma.201300244.
https://doi.org/10.1002/adma.201300244
15. Georgobiani A.N., Sheynkman M.K. (eds.) The Physics of AIIBVI Compounds. Moscow, Nauka, 1986 (in Russian).
16. Grynko D.A., Fedoryak A.N., Dimitriev O.P., Lin A., Laghumavarapu R.B., Huffaker D.L. Growth of CdS nanowire crystals: Vapor-liquid-solid versus vapor-solid mechanisms. Surface and Coatings Technology. 2013. 230. P. 234-238. DOI: 10.1016/j.surfcoat.2013.06.058.
https://doi.org/10.1016/j.surfcoat.2013.06.058
17. Sears G.W. A mechanism of whisker growth. Acta Metal. 1955. 3. P. 367-369. DOI: 10.1016/0001-6160(55)90042-0.
https://doi.org/10.1016/0001-6160(55)90042-0
18. Grynko D.O., Fedoryak A.N., Smertenko P.S., Dimitriev O.P., Ogurtsov N.A., Pud A.A. Hybrid solar cell on a carbon fiber. Nanoscale Res. Lett. 2016. 11, No 1. P. 265-274. DOI: 10.1186/s11671-016-1469-7.
https://doi.org/10.1186/s11671-016-1469-7
19. Liu W., Jia C., Jin C., Yao L., Cai W., Li X. Growth mechanism and photoluminescence of CdS nanobelts on Si substrate. J. Cryst. Growth. 2004. 269, No 2-4. P. 304-309. DOI: 10.1016/j.jcrysgro.2004.05.093.
https://doi.org/10.1016/j.jcrysgro.2004.05.093
20. Mochizuki K., Satoh M., Igaki K. Orange luminescence in CdS. Jpn. J. Appl. Phys. 1983. 22, No. 9. P. 1414-1417. DOI: 10.1143/JJAP.22.1414.
https://doi.org/10.1143/JJAP.22.1414
21. Veamatahau A., Jiang B., Seifert T. et al. Origin of surface trap states in CdS quantum dots: Relationship between size dependent photoluminescence and sulfur vacancy trap states. Phys. Chem. Chem. Phys. 2015. 17. P. 2850-2858. DOI: 10.1039/C4CP04761C.
https://doi.org/10.1039/C4CP04761C
22. Liang S., Li M., Wang J.-H., Liu X.-L., Hao Z.-H., Zhou L., Yu X.-F., Wang Q.-Q. Silica-coated and annealed CdS nanowires with enhanced photoluminescence. Opt. Exp. 2013. 21, No 3. P. 3253-3258. DOI: 10.1364/OE.21.003253.
https://doi.org/10.1364/OE.21.003253
23. Liu B., Chen R., Xu X.L. et al. Exciton-related photoluminescence and lasing in CdS nanobelts. J. Phys. Chem. C. 2011. 115. P. 12826-12830. DOI: 10.1021/jp203551f.
https://doi.org/10.1021/jp203551f