Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 237-251 (2019).
DOI: https://doi.org/10.15407/spqeo22.02.237


References

1. Rahm M., Nahata A., Akalin T., Beruete M. and Sorolla M. Focus on terahertz plasmonics. New J. Phys. 2015. 17. P. 100201; https://doi.org/10.1038/nphoton.2013.235.
https://doi.org/10.1038/nphoton.2013.235
2. Zhang Y., Xu Y., Tian C. et al. Terahertz spoof surface-plasmon-polariton subwavelength wave-guide. Photonics Research. 2018. 6. P. 18; https://doi.org/10.1364/PRJ.6.000018.
https://doi.org/10.1364/PRJ.6.000018
3. Kawano Y. and Ishibashi K. On-chip near-field terahertz detection based on a two-dimensional electron gas. Physica E. 2010. 42. P. 1188-1191; https://doi.org/10.1016/j.physe.2009.11.082.
https://doi.org/10.1016/j.physe.2009.11.082
4. Serita K., Mizuno S., Murakami H., Kawayama I., Takahashi Y., Yoshimura M., Mori Y., Darmo J., and Tonouchi M. Scanning laser terahertz near-field imaging system. Opt. Exp. 2012. 20. P. 12959-12965; https://doi.org/10.1364/OE.20.012959.
https://doi.org/10.1364/OE.20.012959
5. Kang C., Leem J.W., Maeng I., Kim T.H., Lee J.S., Yu J.S., and Kee C.-S. Strong emission of terahertz radiation from nanostructured Ge surfaces. Appl. Phys. Lett. 2015. 106. P. 261106; https://doi.org/10.1063/1.4923372.
https://doi.org/10.1063/1.4923372
6. Melentev G.A., Shalygin V.A., Vorobjev L.E. et al. Interaction of surface plasmon polaritons in heavily doped GaN microstructures with terahertz radiation. J. Appl. Phys. 2016. 119. P. 093104; https://doi.org/10.1063/1.4943063.
https://doi.org/10.1063/1.4943063
7. Saliha M., Dean P., Valavanis A., Khanna S.P., Li L.H., Cunningham J.E., Davies A.G., and Linfield E.H. Terahertz quantum cascade lasers with thin resonant-phonon depopulation active regions and surface-plasmon waveguides. J. Appl. Phys. 2013. 113. P. 113110; https://doi.org/10.1063/1.4795606.
https://doi.org/10.1063/1.4795606
8. Berry C.W. and Jarrahi M. Terahertz generation using plasmonic photoconductive gratings. New J. Phys. 2012. 14. P. 105029; https://doi.org/10.1088/1367-2630/14/10/105029.
https://doi.org/10.1088/1367-2630/14/10/105029
9. Otsuji T. and Shur M. Terahertz Plasmonics: Good Results and Great Expectations. IEEE Microwave Magazine. 2014. 15. P. 43-50; https://doi.org/10.1109/MMM.2014.2355712.
https://doi.org/10.1109/MMM.2014.2355712
10. Chaplik A.V. Absorption and emission of electromagnetic waves by two-dimensional plasmons. Surf. Sci. Rep. 1985. 5. P. 289; https://doi.org/10.1016/0167-5729(85)90010-X.
https://doi.org/10.1016/0167-5729(85)90010-X
11. Popov V.V. Plasmon excitation and plasmonic detection of terahertz radiation in the grating-gate field-effect-transistor structures. J. Infrared, Millimeter, Terahertz Waves. 2011. 32. P. 1178-1191; https://doi.org/10.1007/s10762-011-9813-6.
https://doi.org/10.1007/s10762-011-9813-6
12. Popov V.V., Polischuk O.V., Teperik T.V., Peralta X.G., Allen S.J., Horing N.J.M., Wanke M.C. Absorption of terahertz radiation by plasmon modes in a grid-gated double-quantum-well field-effect transistor. J. Appl. Phys. 2003. 94. P. 3556; https://doi.org/10.1063/1.1599051.
https://doi.org/10.1063/1.1599051
13. Dyer G.C., Aizin G.R., Preu S., Vinh N.Q., Allen S.J., Reno J.L. and Shaner E.A. Inducing an incipient terahertz finite plasmonic crystal in coupled two dimensional plasmonic cavities. PRL. 2012. 109. P. 126803; https://doi.org/10.1103/PhysRevLett.109.126803.
https://doi.org/10.1103/PhysRevLett.109.126803
14. Qin H., Yu Y., Li X., Sun J., Huang Y. Excitation of terahertz plasmon in two-dimensional electron gas. Terahertz Sci. and Technol. 2016. 9. P. 71; https://doi.org/ 10.11906/TST.71-81.2016.06.07.
15. Bhatti A.S., Richards D., Hughes H.P., Ritchie D.A. Spatially resolved Raman scattering from hot acoustic and optic plasmons. Phys. Rev. B. 1996. 53. P. 11 016; https://doi.org/10.1103/PhysRevB.53.11016.
https://doi.org/10.1103/PhysRevB.53.11016
16. Popov V.V., Fateev D.V., Otsuji T., Meziani Y.M., Coquillat D., Knap W. Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell. Appl. Phys. Lett. 2011. 99. P. 243504; https://doi.org/10.1063/1.3670321.
https://doi.org/10.1063/1.3670321
17. Watanabe T., Boubanga-Tombet S., Tanimoto Y. et al. Ultrahigh sensitive plasmonic terahertz detector based on an asymmetric dual-grating gate HEMT structure. Solid-State Electronics. 2012. 78. P. 109-114; https://doi.org/10.1016/j.sse.2012.05.047.
https://doi.org/10.1016/j.sse.2012.05.047
18. Yermolayev D.M., Maremyanin K.M., Fateev D.V. et al. Terahertz detection in a slit-grating-gate field-effect-transistor structure. Solid-State Electronics. 2013. 86. P. 64-67; https://doi.org/10.1016/j.sse.2012.09.009.
https://doi.org/10.1016/j.sse.2012.09.009
19. Olbrich P., Kamann J., Konig M. et al. Terahertz ratchet effects in graphene with a lateral superlattice. Phys. Rev. B. 2016. 93. P. 075422; https://doi.org/10.1103/PhysRevB.93.075422.
https://doi.org/10.1103/PhysRevB.93.075422
20. Borgnia Dan S., Phan Trung V., Levitov L.S. Quasi-relativistic doppler effect and non-reciprocal plasmons in graphene. ArXiv:1512.09044 (2015).
21. Lyaschuk Yu.M. and Korotyeyev V.V. Theory of detection of terahertz radiation in hybrid plasmonic structures with drifting electron gas. Ukr. J. Phys. 2017. 62. P. 889; https://doi.org/10.15407/ujpe62.10.0889.
https://doi.org/10.15407/ujpe62.10.0889
22. Krasheninnikov M.V. and Chaplik A.V. Radiative decay of two-dimensional plasmons. Zh. Eksp. Teor. Fiz. 1985. 88. P. 129-133.
23. Jaktas V., Grigelionis I., Janonis V. et al. Electrically driven terahertz radiation of 2DEG plasmons in AlGaN/GaN structures at 110 K temperature. Appl. Phys. Lett. 2017. 110. P. 202101; https://doi.org/10.1063/1.4983286.
https://doi.org/10.1063/1.4983286
24. Zheng Zhongxin, Sun Jiandong, Zhou Yu, Zhang Zhipeng, Qin Hua, Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure. J. Semicond. 2015. 36. P. 104002; https://doi.org/10.1088/1674-4926/36/10/104002.
https://doi.org/10.1088/1674-4926/36/10/104002
25. Kempa K., Bakshi P., Xie H., Schaich W.L. Current-driven plasma instabilities in solid-state layered systems with a grating. Phys. Rev. B. 1993. 47. P. 4532; https://doi.org/10.1103/PhysRevB.47.4532.
https://doi.org/10.1103/PhysRevB.47.4532
26. Mikhailov S.A. Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems. Phys. Rev. B. 1998. 58. P. 1517; Tunable solid-state far-infrared sources: New ideas and prospects. Recent Res. Devel. Appl. Phys. 1999. 2. P. 65; https://doi.org/10.1103/PhysRevB.58.1517.
https://doi.org/10.1103/PhysRevB.58.1517
27. Korotyeyev V.V., Kochelap V.A., Danylyuk S., and Varani L. Spatial dispersion of the high- frequency conductivity of two-dimensional electron gas subjected to a high electric field: collisionless case. Appl. Phys. Lett. 2018. 113. P. 041102; https://doi.org/10.1063/1.5041322.
https://doi.org/10.1063/1.5041322
28. Mikhailov S.A., Savostianova N.A. and Moskalenko A.S. Negative dynamic conductivity of a current-driven array of graphene nanoribbons. Phys. Rev. B. 2016. 94. P. 035439; https://doi.org/10.1103/PhysRevB.94.035439.
https://doi.org/10.1103/PhysRevB.94.035439
29. Koseki Y., Ryzhii V., Otsuji T., Popov V.V., and Satou A. Giant plasmon instability in a dual-grating-gate graphene field-effect transistor. Phys. Rev. B. 2016. 93. P. 245408; https://doi.org/10.1103/PhysRevB.93.245408.
https://doi.org/10.1103/PhysRevB.93.245408
30. Petrov A.S., Svintsov D., Ryzhii V., Shur M.S. Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals. Phys. Rev. B. 2017. 95. P. 045405; https://doi.org/10.1103/PhysRevB.95.045405.
https://doi.org/10.1103/PhysRevB.95.045405
31. Kim K.W., Korotyeyev V.V., Kochelap V.A., Klimov A.A. and Woolard D.L. Tunable terahertz-frequency resonances and negative dynamic conductivity of two-dimensional electrons in group-III nitrides. J. Appl. Phys. 2004. 96. P. 6488; https://doi.org/10.1063/1.1811388.
https://doi.org/10.1063/1.1811388
32. Lu J.T., Cao J.C. and Feng S.L. Hot-electron dynamics and terahertz generation in GaN quantum wells in the streaming transport regime. Phys. Rev. B. 2006. 73. P. 195326; https://doi.org/10.1103/PhysRevB.73.195326.
https://doi.org/10.1103/PhysRevB.73.195326
33. Shiktorov P., Starikov E., Gruzinskis V., Varani L., Palermo C., Millithaler J-F. and Reggiani L. Frequency limits of terahertz radiation generated by optical-phonon transit-time resonance in quantum wells and heterolayers. Phys. Rev. B. 2007. 76. P. 045333; https://doi.org/10.1103/PhysRevB.76.045333.
https://doi.org/10.1103/PhysRevB.76.045333
34. Korotyeyev V.V., Kochelap V.A., and Varani L. Wave excitations of drifting two-dimensional electron gas under strong inelastic scattering. J. Appl. Phys. 2012. 112. P. 083721; https://doi.org/10.1063/1.4759277.
https://doi.org/10.1063/1.4759277
35. Laurent T., Sharma R., Torres J. et al. Voltage-controlled sub-terahertz radiation transmission through GaN quantum well structure. Appl. Phys. Lett. 2011. 99. P. 082101; https://doi.org/10.1063/1.3627183.
https://doi.org/10.1063/1.3627183
36. Ambacher O., Foutz B., Smart J. et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 2000. 87. P. 334; https://doi.org/10.1063/1.371866.
https://doi.org/10.1063/1.371866
37. Sydoruk V.A., Zadorozhnyi I., Hardtdegen H. et al. Electronic edge-state and space-charge phenomena in long GaN nanowires and nanoribbons. Nanotechnology. 2017. 28. P. 135204; Fluctuation and Noise Letters. 2017. 16. P. 1750010; https://doi.org/10.1088/1361-6528/aa5de3.
https://doi.org/10.1088/1361-6528/aa5de3
38. Sakai K. (Ed.): Terahertz Optoelectronics. Topics Appl. Phys. 2005. 97. P. 1-31; https://doi.org/10.1007/b80319.
https://doi.org/10.1007/b80319
39. Matov O.R., Meshkov O.F., and Popov V.V. Spectrum of plasma oscillations in structures with a periodically inhomogeneous two-dimensional electron plasma. Zh. Eksp. Teor. Fiz. 1998. 113. P. 988 [JETP. 1998. 86. P. 538]; https://doi.org/10.1134/1.558500.
https://doi.org/10.1134/1.558500
40. Ordal M.A., Long L.L., Bell R.J., Bell S.E., Bell R.R., Alexander R.W., Ward C.A. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Optics. 1983. 22. P. 1099; https://doi.org/10.1364/AO.22.001099.
https://doi.org/10.1364/AO.22.001099
41. Levinstein M., Rumyantsev S., and Shur M. Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York, 2001.
42. Rajab K.Z., Naftaly M., Linfield E.H., Nino J.C., Arenas D., Tanner D., Mittra R., and Lanagan M. Broadband dielectric characterization of aluminum oxide (Al2O3). Micro and Elect. Pack. 2008. 5. P. 101-106; https://doi.org/10.4071/1551-4897-5.1.1.
https://doi.org/10.4071/1551-4897-5.1.1
43. Glasko V.B., Khudak Yu.I. Additive representations of the characteristics of plane-layered media and the uniqueness of the solution of converse problems. USSR Computational Mathematics and Mathematical Physics. 1980. 20. P. 213-222; https://doi.org/10.1016/0041-5553(80)90035-X.
https://doi.org/10.1016/0041-5553(80)90035-X