Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (2) P. 237-251 (2019).
DOI:
https://doi.org/10.15407/spqeo22.02.237
References
1. Rahm M., Nahata A., Akalin T., Beruete M. and Sorolla M. Focus on terahertz plasmonics. New J. Phys. 2015. 17. P. 100201; https://doi.org/10.1038/nphoton.2013.235. https://doi.org/10.1038/nphoton.2013.235 | | 2. Zhang Y., Xu Y., Tian C. et al. Terahertz spoof surface-plasmon-polariton subwavelength wave-guide. Photonics Research. 2018. 6. P. 18; https://doi.org/10.1364/PRJ.6.000018. https://doi.org/10.1364/PRJ.6.000018 | | 3. Kawano Y. and Ishibashi K. On-chip near-field terahertz detection based on a two-dimensional electron gas. Physica E. 2010. 42. P. 1188-1191; https://doi.org/10.1016/j.physe.2009.11.082. https://doi.org/10.1016/j.physe.2009.11.082 | | 4. Serita K., Mizuno S., Murakami H., Kawayama I., Takahashi Y., Yoshimura M., Mori Y., Darmo J., and Tonouchi M. Scanning laser terahertz near-field imaging system. Opt. Exp. 2012. 20. P. 12959-12965; https://doi.org/10.1364/OE.20.012959. https://doi.org/10.1364/OE.20.012959 | | 5. Kang C., Leem J.W., Maeng I., Kim T.H., Lee J.S., Yu J.S., and Kee C.-S. Strong emission of terahertz radiation from nanostructured Ge surfaces. Appl. Phys. Lett. 2015. 106. P. 261106; https://doi.org/10.1063/1.4923372. https://doi.org/10.1063/1.4923372 | | 6. Melentev G.A., Shalygin V.A., Vorobjev L.E. et al. Interaction of surface plasmon polaritons in heavily doped GaN microstructures with terahertz radiation. J. Appl. Phys. 2016. 119. P. 093104; https://doi.org/10.1063/1.4943063. https://doi.org/10.1063/1.4943063 | | 7. Saliha M., Dean P., Valavanis A., Khanna S.P., Li L.H., Cunningham J.E., Davies A.G., and Linfield E.H. Terahertz quantum cascade lasers with thin resonant-phonon depopulation active regions and surface-plasmon waveguides. J. Appl. Phys. 2013. 113. P. 113110; https://doi.org/10.1063/1.4795606. https://doi.org/10.1063/1.4795606 | | 8. Berry C.W. and Jarrahi M. Terahertz generation using plasmonic photoconductive gratings. New J. Phys. 2012. 14. P. 105029; https://doi.org/10.1088/1367-2630/14/10/105029. https://doi.org/10.1088/1367-2630/14/10/105029 | | 9. Otsuji T. and Shur M. Terahertz Plasmonics: Good Results and Great Expectations. IEEE Microwave Magazine. 2014. 15. P. 43-50; https://doi.org/10.1109/MMM.2014.2355712. https://doi.org/10.1109/MMM.2014.2355712 | | 10. Chaplik A.V. Absorption and emission of electromagnetic waves by two-dimensional plasmons. Surf. Sci. Rep. 1985. 5. P. 289; https://doi.org/10.1016/0167-5729(85)90010-X. https://doi.org/10.1016/0167-5729(85)90010-X | | 11. Popov V.V. Plasmon excitation and plasmonic detection of terahertz radiation in the grating-gate field-effect-transistor structures. J. Infrared, Millimeter, Terahertz Waves. 2011. 32. P. 1178-1191; https://doi.org/10.1007/s10762-011-9813-6. https://doi.org/10.1007/s10762-011-9813-6 | | 12. Popov V.V., Polischuk O.V., Teperik T.V., Peralta X.G., Allen S.J., Horing N.J.M., Wanke M.C. Absorption of terahertz radiation by plasmon modes in a grid-gated double-quantum-well field-effect transistor. J. Appl. Phys. 2003. 94. P. 3556; https://doi.org/10.1063/1.1599051. https://doi.org/10.1063/1.1599051 | | 13. Dyer G.C., Aizin G.R., Preu S., Vinh N.Q., Allen S.J., Reno J.L. and Shaner E.A. Inducing an incipient terahertz finite plasmonic crystal in coupled two dimensional plasmonic cavities. PRL. 2012. 109. P. 126803; https://doi.org/10.1103/PhysRevLett.109.126803. https://doi.org/10.1103/PhysRevLett.109.126803 | | 14. Qin H., Yu Y., Li X., Sun J., Huang Y. Excitation of terahertz plasmon in two-dimensional electron gas. Terahertz Sci. and Technol. 2016. 9. P. 71; https://doi.org/ 10.11906/TST.71-81.2016.06.07. | | 15. Bhatti A.S., Richards D., Hughes H.P., Ritchie D.A. Spatially resolved Raman scattering from hot acoustic and optic plasmons. Phys. Rev. B. 1996. 53. P. 11 016; https://doi.org/10.1103/PhysRevB.53.11016. https://doi.org/10.1103/PhysRevB.53.11016 | | 16. Popov V.V., Fateev D.V., Otsuji T., Meziani Y.M., Coquillat D., Knap W. Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell. Appl. Phys. Lett. 2011. 99. P. 243504; https://doi.org/10.1063/1.3670321. https://doi.org/10.1063/1.3670321 | | 17. Watanabe T., Boubanga-Tombet S., Tanimoto Y. et al. Ultrahigh sensitive plasmonic terahertz detector based on an asymmetric dual-grating gate HEMT structure. Solid-State Electronics. 2012. 78. P. 109-114; https://doi.org/10.1016/j.sse.2012.05.047. https://doi.org/10.1016/j.sse.2012.05.047 | | 18. Yermolayev D.M., Maremyanin K.M., Fateev D.V. et al. Terahertz detection in a slit-grating-gate field-effect-transistor structure. Solid-State Electronics. 2013. 86. P. 64-67; https://doi.org/10.1016/j.sse.2012.09.009. https://doi.org/10.1016/j.sse.2012.09.009 | | 19. Olbrich P., Kamann J., Konig M. et al. Terahertz ratchet effects in graphene with a lateral superlattice. Phys. Rev. B. 2016. 93. P. 075422; https://doi.org/10.1103/PhysRevB.93.075422. https://doi.org/10.1103/PhysRevB.93.075422 | | 20. Borgnia Dan S., Phan Trung V., Levitov L.S. Quasi-relativistic doppler effect and non-reciprocal plasmons in graphene. ArXiv:1512.09044 (2015). | | 21. Lyaschuk Yu.M. and Korotyeyev V.V. Theory of detection of terahertz radiation in hybrid plasmonic structures with drifting electron gas. Ukr. J. Phys. 2017. 62. P. 889; https://doi.org/10.15407/ujpe62.10.0889. https://doi.org/10.15407/ujpe62.10.0889 | | 22. Krasheninnikov M.V. and Chaplik A.V. Radiative decay of two-dimensional plasmons. Zh. Eksp. Teor. Fiz. 1985. 88. P. 129-133. | | 23. Jaktas V., Grigelionis I., Janonis V. et al. Electrically driven terahertz radiation of 2DEG plasmons in AlGaN/GaN structures at 110 K temperature. Appl. Phys. Lett. 2017. 110. P. 202101; https://doi.org/10.1063/1.4983286. https://doi.org/10.1063/1.4983286 | | 24. Zheng Zhongxin, Sun Jiandong, Zhou Yu, Zhang Zhipeng, Qin Hua, Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure. J. Semicond. 2015. 36. P. 104002; https://doi.org/10.1088/1674-4926/36/10/104002. https://doi.org/10.1088/1674-4926/36/10/104002 | | 25. Kempa K., Bakshi P., Xie H., Schaich W.L. Current-driven plasma instabilities in solid-state layered systems with a grating. Phys. Rev. B. 1993. 47. P. 4532; https://doi.org/10.1103/PhysRevB.47.4532. https://doi.org/10.1103/PhysRevB.47.4532 | | 26. Mikhailov S.A. Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems. Phys. Rev. B. 1998. 58. P. 1517; Tunable solid-state far-infrared sources: New ideas and prospects. Recent Res. Devel. Appl. Phys. 1999. 2. P. 65; https://doi.org/10.1103/PhysRevB.58.1517. https://doi.org/10.1103/PhysRevB.58.1517 | | 27. Korotyeyev V.V., Kochelap V.A., Danylyuk S., and Varani L. Spatial dispersion of the high- frequency conductivity of two-dimensional electron gas subjected to a high electric field: collisionless case. Appl. Phys. Lett. 2018. 113. P. 041102; https://doi.org/10.1063/1.5041322. https://doi.org/10.1063/1.5041322 | | 28. Mikhailov S.A., Savostianova N.A. and Moskalenko A.S. Negative dynamic conductivity of a current-driven array of graphene nanoribbons. Phys. Rev. B. 2016. 94. P. 035439; https://doi.org/10.1103/PhysRevB.94.035439. https://doi.org/10.1103/PhysRevB.94.035439 | | 29. Koseki Y., Ryzhii V., Otsuji T., Popov V.V., and Satou A. Giant plasmon instability in a dual-grating-gate graphene field-effect transistor. Phys. Rev. B. 2016. 93. P. 245408; https://doi.org/10.1103/PhysRevB.93.245408. https://doi.org/10.1103/PhysRevB.93.245408 | | 30. Petrov A.S., Svintsov D., Ryzhii V., Shur M.S. Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals. Phys. Rev. B. 2017. 95. P. 045405; https://doi.org/10.1103/PhysRevB.95.045405. https://doi.org/10.1103/PhysRevB.95.045405 | | 31. Kim K.W., Korotyeyev V.V., Kochelap V.A., Klimov A.A. and Woolard D.L. Tunable terahertz-frequency resonances and negative dynamic conductivity of two-dimensional electrons in group-III nitrides. J. Appl. Phys. 2004. 96. P. 6488; https://doi.org/10.1063/1.1811388. https://doi.org/10.1063/1.1811388 | | 32. Lu J.T., Cao J.C. and Feng S.L. Hot-electron dynamics and terahertz generation in GaN quantum wells in the streaming transport regime. Phys. Rev. B. 2006. 73. P. 195326; https://doi.org/10.1103/PhysRevB.73.195326. https://doi.org/10.1103/PhysRevB.73.195326 | | 33. Shiktorov P., Starikov E., Gruzinskis V., Varani L., Palermo C., Millithaler J-F. and Reggiani L. Frequency limits of terahertz radiation generated by optical-phonon transit-time resonance in quantum wells and heterolayers. Phys. Rev. B. 2007. 76. P. 045333; https://doi.org/10.1103/PhysRevB.76.045333. https://doi.org/10.1103/PhysRevB.76.045333 | | 34. Korotyeyev V.V., Kochelap V.A., and Varani L. Wave excitations of drifting two-dimensional electron gas under strong inelastic scattering. J. Appl. Phys. 2012. 112. P. 083721; https://doi.org/10.1063/1.4759277. https://doi.org/10.1063/1.4759277 | | 35. Laurent T., Sharma R., Torres J. et al. Voltage-controlled sub-terahertz radiation transmission through GaN quantum well structure. Appl. Phys. Lett. 2011. 99. P. 082101; https://doi.org/10.1063/1.3627183. https://doi.org/10.1063/1.3627183 | | 36. Ambacher O., Foutz B., Smart J. et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 2000. 87. P. 334; https://doi.org/10.1063/1.371866. https://doi.org/10.1063/1.371866 | | 37. Sydoruk V.A., Zadorozhnyi I., Hardtdegen H. et al. Electronic edge-state and space-charge phenomena in long GaN nanowires and nanoribbons. Nanotechnology. 2017. 28. P. 135204; Fluctuation and Noise Letters. 2017. 16. P. 1750010; https://doi.org/10.1088/1361-6528/aa5de3. https://doi.org/10.1088/1361-6528/aa5de3 | | 38. Sakai K. (Ed.): Terahertz Optoelectronics. Topics Appl. Phys. 2005. 97. P. 1-31; https://doi.org/10.1007/b80319. https://doi.org/10.1007/b80319 | | 39. Matov O.R., Meshkov O.F., and Popov V.V. Spectrum of plasma oscillations in structures with a periodically inhomogeneous two-dimensional electron plasma. Zh. Eksp. Teor. Fiz. 1998. 113. P. 988 [JETP. 1998. 86. P. 538]; https://doi.org/10.1134/1.558500. https://doi.org/10.1134/1.558500 | | 40. Ordal M.A., Long L.L., Bell R.J., Bell S.E., Bell R.R., Alexander R.W., Ward C.A. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Optics. 1983. 22. P. 1099; https://doi.org/10.1364/AO.22.001099. https://doi.org/10.1364/AO.22.001099 | | 41. Levinstein M., Rumyantsev S., and Shur M. Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York, 2001. | | 42. Rajab K.Z., Naftaly M., Linfield E.H., Nino J.C., Arenas D., Tanner D., Mittra R., and Lanagan M. Broadband dielectric characterization of aluminum oxide (Al2O3). Micro and Elect. Pack. 2008. 5. P. 101-106; https://doi.org/10.4071/1551-4897-5.1.1. https://doi.org/10.4071/1551-4897-5.1.1 | | 43. Glasko V.B., Khudak Yu.I. Additive representations of the characteristics of plane-layered media and the uniqueness of the solution of converse problems. USSR Computational Mathematics and Mathematical Physics. 1980. 20. P. 213-222; https://doi.org/10.1016/0041-5553(80)90035-X. https://doi.org/10.1016/0041-5553(80)90035-X | |
|
|