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1. Introduction

The main problem of physical kinetics is construction of
a well-grounded kinetic equation and solution of it to
obtain non-equilibrium distribution function (see, for
example, [1-4]). The second step is to evaluate kinetic
coefficients (see [5-9]). The first problem has no well
satisfactory solution up to date. The main trouble is
related with the specific form of kinetic equation (that is
an integer-differential equation with specific derivatives).
Today, there is no reliable way to find analytically
precise solution of it, and in practice one has to construct
and use some suitable approximations. One typical way
is to neglect e-e-collisions of band charged carriers, but
this way sometimes is not confident. Investigation shows
that these collisions can be especially important for
complex system of different types of band carriers (for
example, system different of band-valleys).

2. One-particle density matrix for non-equilibrium
many-particle system of charged carriers

Design by the symbols 4, B efc. some quantum numbers
that characterize states of separate particles, which make
up a system of charged band carriers. For uniform space,
we assume the notation A — k, , where k, is the wave-
vector. If the system of charged carriers is separated by
several distinctive parts, we design these parts by the
chosen symbols p or g that belong to the used set of
numbers: (p or g) =a, b, c etc.

Let the values W,”(F) or ¥, *() are basic one-

particle wave-functions. In what follows, the spin
variables and spin quantum numbers are not applied,
with account of processes of spin overturn they are not
considered here.

The one-particle density matrix for p-carriers is
defined in the following way:

Pis() =phs()=ap" (®)ag(®). @1
The cross-particle density matrix is as follows:
phE (1) = ap® () af (1) . (2.2)

. . + .
Here, ¢ is time, a,” and af are operators of generation

and annihilation of band p-particles, the state of which is
marked as A. The averaged value of density matrix (2.1):

Flp @) ={php®) =(az" ®)ak®)). (2.3)

Averaging procedure < > is presented by angle brackets;

formally it is performed using the non-equilibrium
statistical operator related to all the band carriers and to
external scattering system together. The latter is
presented by external accidental microscopic fields and

macroscopic electrical field E (see [1-5]).
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Now write the set of equations for one-particle
Phs(®)
particles. As the start point, one uses the standard motion
Phs (@)

representation (see, for instance [3]):

density matrices relating to the chosen p-

equations for operators at Heisenberg

p A
. a"gf“) o, )=

=phs () HY —H'ph (). (2.4)

Here, the total Hamiltonian H Z" of considered p-system

is the sum of four parts:

Ttot 1y ’ 3 3
H —Hp+HS+HpS+ZHpg
8

2.5)

Here, the Hamiltonian H , concerns carriers non-

interacting with microscopic scattering fields, individual
Hamiltonian H relates to external scattering system of
impurities and phonons (see, for instance [6]), and
Hamiltonian H ¢ =e,@g describes interaction of p-
carriers (farther we call them for simplicity as electrons)
with external scattering system, Hamiltonian H g

represents the mutual p-g-interaction. The macroscopic
electric field is directed along z-axis: E = (O ,0,E Z) .
The first term in the right part of (2.5) is

+p P

as ag . (2.6)

Hamiltonian of Coulomb interaction of band
carriers has the following form (see [10]):

H, = va(]gA'B'aXpayalﬁ'agB , 2.7
ABA'B'
where
* * 1
Visas ___J.d3 J.ds WP (AW (F )|?—F'|X
XWE (F)PE (7). 2.8)

Hamiltonian H ps has the form concerning the scattering

potential:

pS— pZ( (S)) par’ap _ePZ(

)ABPZA 2.9)

Below, we omit the term that simply shows a shift
of origin for counting out the kinetic energy. As a result,
one obtains total Hamiltonian in the form

=3 i,
+Z Z ABAB[pBA’pBA L"‘Hs

g ABA'B'

)AB e ((P(S) )AB }@ZA +

(2.10)

Here, [C,D], = (1/2)(CD + DC) .

Substituting Eqs. (2.8)—-(2.10) to Eq.(2.3) and
performing necessary commutation procedures, one
obtains the following equation:

apAB(t)_Z[ A, ACpCB(Z) pAC(l)( )B] +

DI (0ot < o690+
C
2

C A'B

-V [Pﬁc (1), Pi’g'(f)L} )

{V/ng’A’ [pi'B' (),pep(t )L -
@2.11)

Transform the density matrix p%,(r) and external
scattering potential @ into the sum of averaged values
and corresponding fluctuations:

Phs(®) = fis(0)+3ply (D),
Q5 () ap =<(Ps (t)AB>+5(pS () ap -

Then, we obtain the following equation for the one-

particle density matrix f =(p},):
off &
Lo =Sl @.12)
Here,
2sr)= Z[ D otl-(0,), r0] @ B A @13

StfL@) =St _s fLO)+ Sty fL D), (2.14)
8

St, s 1 (0=le, /ih)Z[(((&ps ()45 -85 (1)),) -
B

- <((6<Ps(t))BA ,Spﬁg(t))+>] : (2.15)

Sty SFO =0 3 [Vl {0k .305,0).) -

¢ BA'B

-V <(59§'A'(f)’59§3(’))+>]'

BAB'A

(2.16)
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3. Matrix elements of Hamiltonian H,

In this article, for the following calculations we use the
system of plane waves and accept the quantum number A
as the corresponding set of three components of the wave

vector k£ (and so on):

A ky =g gy ). G0
¥, () =¥ (1) =]]¥kpm =
- HL‘”2 exp(ik,,w) . (3.2)

w

Here and farther, w=x,y,z and —L/2<w<L/2. We

suppose that every linear dimension L of the considered
system exceeds utmost every characteristic length and
tends to infinity. The functions W,(F) are proper

functions for the operator of momentum p = hk and for

the operator of kinetic energy €” (l? ):

_ivwlP(kAw;W):kAwlP(kAw;W) (3.3)

and

&P W (F)=¢€” (k)Y (F) 34

where €7 (k) is the dispersion law for p-carriers.

Eq. (2.6) shows that Hamiltonian H , evidently
depends on potential spatial coordinates. In spite of all
points in the 7 -space are equivalent, this Hamiltonian
containing the field-dependent term H ;,E ) is not arbitrary
invariant in space. Therefore, a specific problem appears
for solution of this kinetic equation. Usually, when
calculating the collision integral St pr , the field term
A is simply omitted in this collision integral (and we
call that way, see, for instance, [2, 3] and [7-9], as the

“standard variant”). In this paper, we also consider
another one called as “non-standard variant” (see [11]

and [15]), for which the field term (7®), . in St f; is

retained. Below, inside the collision integral we use the
following designation:

()15 = a2l ). (335)
Here,

x =0 for the standard variant, (3.6)
x =1 for the non-standard variant. 3.7

Now, we take into consideration that functions (3.4)
are invariant to the shift of argument w on the de Broglie

wavelength A4, =27/k,,, :

W (w+hy,) =L 2 explik,,(w+h,,)] =¥, w).
(3.8)

It is easy to convince oneself that the matrix element of
coordinate w is proportional to the Kronecker symbol:

L2
(W)ap = JWT*(kAw;W)T(ka;W)dW:(W)AASAB' (3.9)
-L12

Now we have to find the value (w),, . For this

case, one has to perform the sufficiently easy and
acceptable calculation for the value (3.9). We construct
here some artificial form for specific integral with the
values w. Let the shifted space of integration is:

L,(-)<w<L,(+) (3.10)
and

L,(+)
Wag = [ w8 (k) Wk, s w) dw (3.11)

L,(-)
Here,

L,(+)=L/I2+Mk,), L,(-)=—L/2+Mk,), (3.12)

Mk,)=2n/k, . (3.13)
Later we consider the specific way. Farther we
address to a private case and consider the small changes
of the wave vectors (at Coulomb scattering).
As a result, we find:

Ly (+)
(W)ap = J.W‘P*(kAw; w) Wk, w)dw =
Ly (=)
L, ()
=" [wdw=h,, =2n/k,, . (3.14)
Ly (5
W) ap = 27/ kg, )85 (3.15)

Represent the matrix element of Hamiltonian H »

by the following form (see (3.5)):

A _ _ 2ne E
(H,)ap =840, 5 =100, 5 Z[Sﬁ _X%] 8, 5. (3.16)

Z
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Using the designations k, —k and ky —k—g, one
obtains the formulae

sl _¢gP _gP el _sDP _
iy =4 —€p > €' —E =

—-q
=£§—£§ﬁ+x®”(1€,l€—é), (3.17)
0" (k.k-G)=2me, E.q./k (k. ~q.). (3.18)

Farther, in this article we accept for some p-carriers
the dispersion law of the following form (see, for
instance, the formulae (7.3)):

w? =€ [n=(n/2m) kKD k | E=(0.0.E,). (3.19)
Let us introduce the new designations:
D? =B?.B?, x=kB", Q" =GB " . (3.20)

For small vectors g, farther we use the approximated

form:
0" (k& —G)="2me, E.q. [k, (k, —q.) >
—2me, E.q. Ik} —2me, E.q. (k)=

n°F ()

=d4zme, E _BLQ? =e, E ,QPRE?, 3.21
e 77z xr kaTF3/2(T|) ep zQz g ( )
where N =¢€g/kpT and
&7 = 4mn(DL)""* Fy () /mkgT Fyp(m).  (3.22)
17 "d
F.m)= [——=—. (3.23)
L(r+1D 3 I+exp(w—m)

In what follows, we will use the simplified form
(see Eqgs. (3.17)—(3.22))

[hS}

- of _‘”Q,Q +xe,&" EQOF. (3.24)

>?‘

k=g
4. Collision integrals

When using the Laplace transformation (see Ref. [8])

E(@) = [E() explion dr
0

oo+i0)

j E(0) exp(—iodt) do | 4.1

—oo+i0

&) = €1

Eq. (2.12) accepts the following form

— il ! (t =0) +hedp () =le” —€D | 5p ? () +

g -1t o0) + XSV @ @)

g AB

Introduce the following designations:

b
8070 (@) = lpAE(t 0) ’
0—0f, +i0

P _ P

R

h(oa—E}jBHO) .

Then, we find the lowest term in the set of perturbations
theory:

dp2, (@) =3p/ Y (@) +
+M () e, (5o (m))AB D VI Bp Rp(@) |-
g A'B

4.3)

Due to uniformity of time, the correlator of

fluctuations 8(p(s) (®) can be written as

COHORHEHE 2n6<co+w’)<&p?s>>AB=

=845 80+ )] d'G|(by) o <5<P<s>> L (44)
Here,
b;),, = [ Wi (P expligr ¥, (F)d’F . “5)

In the second order of simplified theory of perturbation
(see, for instance, [5])

<6p£3(t =0) opép(t= 0)> -
- SA'BSAB'Spngp (1_ ff)- (4.6)

As a result, the collision integral for an equilibrium
external scattering system has the form (A —k, and

B—)IEB):
2

Stp—Spr == 3h2 .[d kB<a(P(S)> /;A—/;B 8

noL,
x[ff(l—fBP)+f3p(l )tanh[;: J—'_fA rr

4.7
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For the elastic scattering

<6(p(28)>H’XB’EA_ <6(P(S)> k k S(C_OEZJ;BJ ’ (48)
then it follows from Eq. (4.7):
2
Stp—s(ff)=_8:WX
de kB( -5 )<5(P(S)> 7, S(QEA ];B) (4.9)

The collision integral for p-g-scattering can be
presented by the form

el £ L3 BAZ;; I ‘ (GAB )‘
‘ ila ‘ ‘ ‘ 8\@5 — @ ) (4.10)
BT |

Now show the several correlators for different
external scattering potentials (see Refs. [5, 6]). They have
the simple forms

<5(P(25)>q =‘I)(S)(C])/CIV(S) “4.11)

For the system of charged impurities with the
concentration n¢; (used here is the simplified dielectric

function: I/SL (u)AB, ) (I/SL) ¥g —q,) [13, 15]) and

P (CI)(q) =P (Cl)ﬂ(q - C]o) =32m’e’ Ney ﬂ(C] — 4o )/Si s
v(CI)=4 4.12)

(here, n¢; is the density of charged centers).
For the piezoelectric scattering by longitudinal
acoustic phonons

@ 1) (q) =P qy) = GkgT , (1) =2, (4.13)

at high temperatures (70, <<kgl') for the quasi-

elastic scattering by polar optical phonons one can use
the expression

D o (@ =P o) = 8 kgT/e*, v(Opt)=2, (4.14)

at the quasi-elastic scattering by acoustic phonons
(hsq <<kgT)

D@ 1) (q) =Py, =2 E} 1<BT/e2ps2 , (Ac) =0, (4.15)

for neutral impurities (see [13])

D\ (@)= CI)(1V1)—87c e "B”((13)))[1+9XP( n+nD)] )
WNI) =0 (4.16)

(here,n=¢p/kgT, Mp=¢€p/kgT, and the value

€, <0 represents the energetic level of a donor).

5. Static kinetic equations

The static system has the form (see Eq. (2.12))

f”
; E¥=Stp_5flg’ +ZStpngg L(pg=1,2,3,..)
g
(5.1)
or (see also Egs. (4.9) and (4.10))
e af[’ 2 64
PP(S)+——— ) WP 52
W E ok 8wnt 2m’h%e] Zg: k ©:2)
Here (see (4.10), (4.11), (3.20)),
prs) =[R2 g2 Koot ) 3l@e )=
=J.d3é( ¢ —f];p_g)<5(p(25)> ( O k-5 ) (5.3)

WP =
Jld%kjﬂﬂ(q 0)8(0,,[c. &), . 5.3). G4

where (see (3.17))

o (k,k,g)= o, -
L IR (5.5)

:ng(k,k',c])+xhﬁE(epr—eng )Zl,
S T R

(5.6)
= (w/m)kB7 - k'D*)a-a (D7 + 5*)a/2]
ﬁf’ﬂ(/E,k’,q)zng’ﬂ(E,/E',~)=
= (n/m)lE - k"~ 3)D"3, e-D
A KRG = L (= FIfE, (= f5)-

(5.8)

—fEA=FEDFEA=FE D

k'+q
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Now, let us separate the distribution function pr
and the function A, (E,E’,q) by equilibrium and non-

equilibrium terms (there M=¢€p/kgT and &g is the
Fermi energy):

L=+ 1,

01’ = {1+exp[(€p / kBT) ﬂ]} (1+C£ Tl’

1—f;f’ =c£(1+cg)

; 5.9)
A 6. 8,5)= A0 (6,8,5)+ A (€.6%G). .10
O .86)= 727 (1= £20 ) (1- 720)-
s e )-
(e e g ieeg, ) x s

xclfcg,(l—Ck ' k+q/Ckng)
(koT ( ()(1’)/a£p) °<8>/asg11 L c,§+q/c,§’C,§]-

A(l) (k k’ é’) flp (1 fOP)ng (1 ng)
— 0 gl 1- f°g)

k'+g

42 (1- 70 )k+q( o)
or) gt

(=)
0- k+q)+

—f”’( ,3 )f
k+q

A
( o lrsli-sts e
s

+f9”(1 PR

k+q

K
(5.12)

1-

Below, one supposes the non-equilibrium function
flglp as small amendment to the equilibrium function
0p

k
linear terms (relatively to the external electrical field E

. Farther our investigation will be restricted by

only). In this paper, we use the following model for flglp
(see (5.9)):

kcr(i+cr )P Rler )T =

2)-are foer).

p :epE
(5.13)

— ~

B
D'kRle

€

Here, R(ag ) is the model unknown function that will be
find later. Then (see Egs. (3.20), (4.11), (5.3))

S(ml{),l?—q )(pr - pr—q)z
=nd e} —si’_a +xhe,& Eﬁpq]%
x(50r = g2n 4 gir = gir )

Solop , Jore Jaer Joen-rlez)] e

(5.14)

5P
oE

N

Now, the coefficient PEP (S) accepts the form (see
4.11) — (4.16))

P”(S)——( o /ae"/as")[R(e") x&h]e ED? x

x [ (@g™ g8 [eD7E - (€ - g)B7 (€ - 3)] 3.
(5.15)

Farther, let us consider the matrix D” to be
diagonal; try also to approximate the integral from the
right part of the expression (5.15). Then, the result is as
follows (see also the forms (3.17), (3.18) and (7.3a)):

@ @aaoliDrk - (e -a)pre ~a) 4’3 =

=M% R 15, (0D s, (5.16)

Here,

M, z‘ﬁp‘_m[g’/Spur(ﬁ;) (S)/zl};’ Hen (9 =Y/,

Hseen (0 =2 OO a—u(s)), (5.17)

Y = (1/2) Inde, [BkgTHE? ())& Jmm 2y F -y (0]
(5.18)

Note that M %, = D =T, the value

Y =(1/2)In [48L\/ 8k THE (ﬂ)/€2 Mﬂ%z (WF,,,M)
(5.19)

is the natural logarithm for the ratio of averaged
deBroigle wavelength to screen length.

For E=(0,0,E.), it follows from (5.9) and
(5.15) - (5.18):

00 [3el K
») / (k]

PL(S #CI) = (2mmav) | n-arls foe Rle |-
@ ()7 fa—ws).

PP (CI)= (2mYnCD(C1)/h)(

e’ )22 -

E,D! x

p-zzz

xe E.DPx'P

p ™z

(5.21)
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Now construct the other linear product:
8(5175’(E’]g,’a))/\pg(];”%”a)z
= S(Q”g (lg,lg',cj)+xéff(ep5p —egﬁg)é)x
a0 (e,1q)+ L (6,7, 3) =
= 8lor (i k)&, (6 8. q)=slor (k. k. q))x

x(&)f;”/asf Xaflgg/aef,)kBTx

x{eglfﬁgci[R(sf)—xh&] - epgﬁpﬁ [R(sf)—xh&]}.

(5.22)
Further, we put for the simplicity
2
WP 5w =——(1+CY) x
k K thT( K T
x(Rlez)-xen) cze, BB+ - b7 )x
33—
- -2
xjd3k’(1 +c3) cg,fqd—fﬁ(q — o) X
q (5.23)

wollipr i )i-alBr + 5¢) /2~

= m—mg(w) (D D* )F—1/2(T])Y[_ afko”/agg]x

«[Rle2 )~ xenle, . (D5 - D2 ). (@mksT) 22

Here, Q(W)(Dp,Dg)zl if D? = D8 =1.

Farther, we use the approximated expression:

WKpg = (27tm/h)F_1/z(n>Y[— Bfgp/aeg][R(efé )_ Xéh] X

xe,E. (D2 - D2 ). 2mkyr /12 [ (5.24)
Note that
WP =0, (5.25)
therefore,
Stppf];’7 =0 (5.26)

For the linear equation, one obtains with account of
the expressions (5.20), (5.21) and (5.24) the equation for

unknown function R (Sg ) :

29807 ¢?
h—f;Esz(Df)l e O
2 (5.27)
PY(S
2n3h2£i ; ©h’ )

6. Solution of Kinetic equation for simple system of
carriers

To solve the kinetic equation, one should find the non-
. At the adopted

model of that (see (5.13)), there is the basic necessity to
find a function R(€).

equilibrium distribution function fElP

We shall consider in this section the solely system
of band carriers ( f];’7 — f ) with the simple dispersion

law (see (3.17)). Due to the expression (5.24), the system
of equations (5.1) reduces to the only kinetic equation
(our consideration is limited by the first degree of
external electric field)

e _ofl”

—E—k—=St, (f., 6.1
A ak e ka ( )
or (for the case S — CI)

e of O 2

0 ) (62)

Introducing here the forms (5.19) and (5.21), one obtains:

At
Ricn () —xEh=— -~ 5=
em (I)(CI)Y(DZZ)I
” 6.3)
nteli’ (
__ L
4 2 2’
8me"m ey Y(Dzz)l
A i) -1
Risscn (@) =x& == 4-v(s) 2 2 2 -
2 em (Dzz)l D s2cr)
h4£iK3
—— -~ ( )1/2. (6.4)
8me " m Nsxcr) D,
Here, we have introduced the concentration of

“conditional scattering centers”:

_ 2 4—v(S#CI) 1+ v(S#CI)
Nsecr) (K) = <I>(S)£L K /2 X

(6.5)
xme[4—v(S = CD)).

Then, one obtains the non-equilibrium part of the
distribution function with the help of expressions (3.20),
(4.12), (5.13), (6.3) and (6.4):
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nthzzeEz KzFllz (n)

f(Ch =~
m (kgT)? F3,, (1) cosh? [(e]-( /kBT)— n/z]

X

7k, Tk e F.
B L 3/2(11) —xl= 6.6)
327C e mn(CI)YD Fl/z(n)

=_ JtthzzeEzKzFl/Z(n) X

m (kgT)? F3,, (1) cosh? [(ek /kBT)— n/z]

o MkeTCE )
32ﬂze4mn(cz>D§z’2E/z(n)

fi(S=Ch)=
nh2DzzeEszFl/2(n)

X
m (kgT)? F;,, (M) cosh? [(sk /kBT)—n/z]

Wk, T2 F.
x[ B 1F3,(M) —X]7 67

2 4 5/2
32n7e"m nes .o (KD “F (M)
or for arbitrary mechanism of relaxation

nthzzeE KzFllz(n)
m (kgT) Fy,,(M)cosh’ [( kT )~ n/z]
X[ Wk TCELF, () —x].

fi(S) =~

(6.8)
32" m s (DY F (M)

7. Solution of kinetic equations for the system of three
ellipsoidal valleys

As an example of complicated system of band charged
carriers, we consider three valleys typical for silicon.
Transitions of carriers between distinct valleys are farther
omitted.

Let us introduce the following designations:

g; =hoy z(hz/ZmL)(lgD(p)lg), m, —m,

'Y:mJ_/m”=m/m”. (7'1)
o = EDPE. of = EDPE e —e.  (12)
k 2m k 2mJ_ P
100 100 Y 00
=0 1 0] D’=[0 vy 0|, D=[0 1 0| (73a)
00y 001 001

0 0 O
D*-D’=D"=|0 1-y 0
0 0 v-1
I-y O
D“-D=D"= 0 0 0 |
0 0 y-1
I-y 0 0
D*-D=DF'=| 0 vy-1 0 (7.3b)
0 0 O
Here,

b;')=3/k+v").

D* = D" = D¢ = D =3/Spur|

‘|=[p*[=Ip

‘I=v. (7.3¢)

The system of kinetic equations is as follows (see

(5.2)):

e - aflg’ e’ et (W—“b +W];“C)

A e O g 0
e #af e’ e4(W—bC+W];h“)

? %k 8 352 k( )+ 3h2 2 . (15
e #af e’ PE(S) e4(th+W]f“)

— = + 7.
no ok 8wk an’hlel (7.0)

Using the expressions shown in Sec. 5, we find now
the factors R (alg ) included to the non-equilibrium

El” (see the form (5.13)).

Remember: pea,b,c and gea,b,c. Below, we use

distribution functions

the expression for the concentration of carriers:

w3 = 3y LhaTm)”

> - \/EnS/ZhS

Inclosing the formulae (5.19) and (5.21) into the system
(7.4)—(7.6), we obtain:

Fio(Mm). (7.7

PP(S % CI) = [2mnd 5, /(4 —v($))Jx
care foct e )-xenle, .oz}

77

PI(S)=PI(CD+) PL(S#CD) =
($)

— (a7 fae2 )R (e2)-xen] e, E.D2 ! (7.9)

x64e*mn’ [Yn(a) +n*(Kp )] /SLI’?(K‘”)3 ,
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where (see (6.5))

n ()= ng) (k).

S#CI

(7.10)

In what follows, we use the approximate expression
(see (5.23))

2nm
W s _771 -1/2

aorlart foez][Rlez)-xen] x

)3 (7.11)
, /2

Taking into attention the expressions (5.2), (5.23) and
(7.7)—(7.11), one can obtain (see (6.5)—(6.7)):

xe,E. (sz -D? )KZ(kaBT/ h’x

fkl(p)(CI)z— - nthzieEszFI/Z(n)
m (kgT) F3,2(n)cosh2[(s§/kBT)—n/z]
h2kBT(K(p))38%F3/2(n) x |.(7.12)

) 32n2e*m (Yn(a) +Y|Bp|n)(sz)5/2Fl/zm)

Here, n is the total density of band carriers and (see (7.7)
and (7.13))

=ZBpg =

8
= F > (p%/ D2 ~1)f6n*?/F . 213)
8
Note also that

F i (n>>D/F,(n>>1) -1,
F,M>>D/F,,m>>1)—2/37,

F ,(m>D)/F;,(—m>1)—>1,

1/2(—M )/ Fa2(—m ) 7.14)

Fllz(n >> 1)/F3/2(T] >>1)—>5/21.

If we consider mutual scattering of band electrons
(for instance, p-carriers) and holes (g-carriers), we have
to change the form (7.13) to the expression

Bp = F—llz(n)Z(engz/epDZ,pz -
g

One can see that in the case engz/eprz =1 the

coefficient $, =0.

8. Another model of non-equilibrium distribution
function

Let us consider here the model of non-equilibrium
distribution function in the form of Fermi-function with
the “shifted” argument:

1)/6x*2/F () (7.15)

8.1

/EOP )/kBT —n]}_l-

Here, 8£=h2(lgﬁpl€)/2m=h2(f<)2/2m and the

£,€)={1+exple, lc -

velocity v7 = n 88/’5/8/? =(n/m)kD” — (h/m)%B” .

The vector kJ is related with the drift velocity v
by the equation

k{ =(m/n)D;'V{ . (8.2)
Then,
e, (&)= /2m)lk 57 )Br (& - iy )=
(8.3)
2/2m[ — @2m/n)kB,'v¢ +(m/n)v¢ 7{’].

After linearization over the velocity v({’ , one
obtains:

F17 = 1k 0 (_ afp/aglzg): nk, P (_ 3f;°/aﬁff)=
1k, v3P)
4kBT cosh? (8"/2/6 T - n/2)

(8.4)

Let in this section S = CI. Then, comparing (8.4) and
(5.13), we have to perform the following action (see
(5.26)):

o0 Jae JIep —xen] x
(”(cz) + Bp”)/eih(k(m)zs

P (CI) = 64me,n" (— of,

xe,E.DLkPntY

2%
where

R =v2Pnfe E.=R!. (8.6)

For the case considered here, the linear kinetic equation
takes the following form:

Bk VXD (D=3 07 ot )<
~ e, B (-0r foet )

~xEh+D2n si(k('”f /8Ynm2e4 X
y (8.7)

X\ ney +”F—1/2(11)Z(sz/ D?, _1)/ 3vF, (M)

4

The supplement of operator J'kzd3l€ to the
equation (8.7) leads to (see also (3.20))
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mkgT Fs,,(M) y

0(p) _
v. "’(Cly=e E
¢ P omhE, (M)

022,23 (8.8)
% D n"e kpkgT F,(MF;,,M) _y
5/2 4 :
2Yn’' “me (nC, +[3pn) [Fl/z(n)]z
Here,
— /2
ky =21 Ry, = 2k T 72 (8.9)
Introducing (8.8) into (8.4), one finds
1p _ k.mFs;,,(Me,E, %
Snﬂ,z(n)coshz(eg/szT—n/z)
(8.10)
D”hzgik;kBT F,(M)F;,,(M) —x
5/2 4 :
2Ym" “me (nC, +Bpn) (F1/2(n))z
For y =1, it follows from (8.4), (8.8) and (8.9) that:
1p _ kzmepEzFS/Z(n)
k SnFl,z(n)coshz(eg/2kBT—n/2)
8.11)

— 3
L([’)
x|| = | —p,
7kdeBr
Here, the value Ayp is the averaged deBroglie

wavelength and the value lﬂ,(gl)) can be named as an

averaged length of relaxation:

1/3
2.2
7 _[402{;\/%;1 eLkBT] . 8.12)

D Yime* (nCI + Bpn)

Note that in the case ﬂ(gl)) =Agp the non-

equilibrium part flglp becomes zero and current of band

carriers disappear.

9. Conclusion

It has been shown that in the crystal with one band for
ellipsoidal valley the mutual scattering of carriers does
not contribute to the distribution function. Practically, we
find the same result for many-valley systems with the
low concentration of band charged carriers (n<ng ):
interaction between these particles does not introduce
any essential contribution into the non-equilibrium

function of distribution f,;l. But quite another situation

appears for inter-particle co-operation with many-valley

band structure and with a great number of band carriers.
In this case, for Bn >>ng, the scattering by charged

impurities does not dominate noticeably in comparison
with the mutual scattering of band carriers.

Note also that the non-equilibrium distribution
function has the traditional form at great ratio of
relaxation length to average deBroglie wavelength (in
this case, we have to neglect the symbol y). If this ratio
rushes to unity, the shown above consideration requires
more careful approach.

We have to direct our attention to the limited
precision of shown here final formulae. One from the
reasons of that is related with traditional limited
exactness for regularization of integrals over the transfer
momentum at Coulomb scattering (see [16-18]. The most
interesting case is approach of length of relaxation to
middle deBroglie wavelength. Earlier, we have
performed approximated calculations. It is quite possible
(that is to be done to investigate it farther) that two
shown lengths bring nearer asymptotically. Farther one
waits in addition the investigation of intervalley
collisions for band carriers.
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