Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (2) P. 119-128 (2020).
DOI: https://doi.org/10.15407/spqeo23.02.119


References

1. Lazur V.Yu., Khoma M.V. Distorted wave theories for one- and two-electron capture in fast atomic collisions. Advances in Quantum Chemistry. 2013. 65. P. 363-405. http://dx.doi.org/10.1016/b978-0-12-396455-7.00013-3.
https://doi.org/10.1016/B978-0-12-396455-7.00013-3
2. Lazur V.Yu., Aleksiy V.V., Karbovanets M.I., Khoma M.V., Myhalyna S.I. Taking the Сoulomb effects into account in the reactions of one-electron charge exchange. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2019. 22. P. 171-181. https://doi.org/10.15407/spqeo22.02.171.
https://doi.org/10.15407/spqeo22.02.171
3. Belkić Dž. Quantum Theory of High-energy Ion-atom Collisions. Taylor & Francis, London, 2008.
https://doi.org/10.1201/9781584887294
4. Lazur V.Yu., Khoma M.V., Janev R.K. Asymptotic properties of the three-Coulomb-center problem eZ1ZZ. Phys. Rev. A. 2006. 73. P. 032723. https://doi.org/10.1103/PhysRevA.73.032723.
https://doi.org/10.1103/PhysRevA.73.032723
5. Khoma M.V., Lazur V.Yu., Janev R.K. Asymptotic theory of the one- and two-electron processes in slow collisions of atomic ions with diatomic molecules. Phys. Rev. A. 2009. 80. P. 032706. https://doi.org/10.1103/PhysRevA.80.032706.
https://doi.org/10.1103/PhysRevA.80.032706
6. Belkić Dž. Total cross sections in five methods for two-electron capture by alpha particles from helium: CDW-4B, BDW-4B, BCIS-4B, CDW-EIS-4B and CB1-4B. JOMC. 2020. 58. P. 1133-1176.https://doi.org/10.1007/s10910-020-01123-4.
https://doi.org/10.1007/s10910-020-01123-4
7. Belkić Dž. Fast Ion-Atom and Ion-Molecule Collisions. World Scientific Publishing Co., Singapore, 2012. https://doi.org/10.1142/8485.
https://doi.org/10.1142/8485
8. Fischetti M.V., Vandenberghe W.G. Advanced Physics of Electron Transport in Semiconductors and Nanostructures. Springer International Publishing, Switzerland, 2016.
https://doi.org/10.1007/978-3-319-01101-1
9. Chao A., Chou W. Reviews of Accelerator Science and Technology - Vol. 10: The Future of Accelerators. World Scientific Publishing Co., Singapore, 2019.
10. Grozdanov T.P., Janev R.K., Lazur V.Yu. Asymptotic theory of the strongly asymmetric two-Coulomb-center problem. Phys. Rev. A. 1985. 32, No 6. P. 3425-3434. https://doi.org/10.1103/PhysRevA.32.3425.
https://doi.org/10.1103/PhysRevA.32.3425
11. Gorvat P.P., Lazur V.Yu. Asymptotic behavior of charge-exchange amplitude at relativistic velocities and binding energies. Theor. and Math. Phys. 1993. 95, No 3. P. 708-724. https://doi.org/10.1007/BF01017517.
https://doi.org/10.1007/BF01017517
12. Gorvat P.P., Lazur V.Yu., Presnyakov L.P., Uskov D.B. Asymptotic behavior of charge-exchange amplitude. Theor. and Math. Phys. 1992. 91, No 1. P. 373-384. https://doi.org/10.1007/BF01019830.
https://doi.org/10.1007/BF01019830
13. Lazur V.Yu., Mashika Yu.Yu., Janev R.K., Grozdanov T.P. Quasi-crossing of Rydberg terms in the problem of two Coulomb centers with strongly differing charges. Theor. and Math. Phys. 1991. 87, No 1. P. 401-410. https://doi.org/10.1007/BF01016580.
https://doi.org/10.1007/BF01016580
14. Belkić Dž., Gayet R., Salin A. Electron capture in high-energy ion-atom collisions. Phys. Repts. 1979. 56, No 6. P. 279-369. https://doi.org/10.1016/0370-1573(79)90035-8.
https://doi.org/10.1016/0370-1573(79)90035-8
15. Dodd L.R., Greider K.R. Rigorous solution of three-body scattering processes in the distorted-wave formalism. Phys. Rev. A. 1966. 146. P. 675-686. https://doi.org/10.1103/PhysRev.146.675.
https://doi.org/10.1103/PhysRev.146.675
16. Nordsieck A. Reduction of an integral in the theory of Bremsstranhlung. Phys. Rev. 1954. 93. P. 785-787. https://doi.org/10.1103/PhysRev.93.785.
https://doi.org/10.1103/PhysRev.93.785
17. Barnett C.F., Harrison M.F.A. Plasmas: Applied Atomic Collision Physics. Academic Press, London, 1984.
18. Crothers D.S.F., McCarroll R. Correlated continuum distorted-wave resonant double electron capture in He2+-He collision. J. Phys. B. 1987. 20, No 12. P. 2835-2842. https://doi.org/10.1088/0022-3700/20/12/027.
https://doi.org/10.1088/0022-3700/20/12/027
19. Gayet R., Rivarola R.D., Salin A. Double electron capture by fast nuclei. J. Phys. B. 1981. 14, No 9. P. 2421-2427. https://doi.org/10.1088/0022-3700/20/12/027.
https://doi.org/10.1088/0022-3700/20/12/027
20. De Castro Faria N.V., Freire F.L. Jr., de Pinho A.G. Electron loss and capture by fast helium ions in noble gases. Phys. Rev. A. 1988. 37, No 1. P. 280-283. https://doi.org/10.1103/PhysRevA.37.280.
https://doi.org/10.1103/PhysRevA.37.280
21. Pluvinage Ph. Fonction d'onde approchée à un paramètre pour l'état fondamental des atomes à deux électrons. Ann. Phys. (Paris). 1950. 12, No 5. P. 145-152. https://doi.org/10.1051/anphys/195012050145.
https://doi.org/10.1051/anphys/195012050145
22. Ghosh S., Dhara A., Mandal C.R., Purkait M. Double-electron-capture cross sections from helium by fully stripped projectile ions in intermediate-to-high energies. Phys. Rev. A. 2008. 78. P. 042708. https://doi.org/10.1103/PhysRevA.78.042708.
https://doi.org/10.1103/PhysRevA.78.042708
23. Purkait M., Sounda S., Dhara A., Mandal C.R. Double-charge-transfer cross sections in inelastic collisions of bare ions with helium atoms. Phys. Rev. A. 2006. 74. P. 042723. https://doi.org/10.1103/PhysRevA.74.042723.
https://doi.org/10.1103/PhysRevA.74.042723
24. Gravielle M.S., Miraglia J.E. Double-electron capture as a two-step process. Phys. Rev. A. 1992. 45, No 5. P. 2965-2973. https://doi.org/10.1103/PhysRevA.45.2965.
https://doi.org/10.1103/PhysRevA.45.2965
25. DuBois R.D. Double-electron capture as a two-step process. Phys. Rev. A. 1987. 36, No 6. P. 2585-2593. https://doi.org/10.1103/PhysRevA.36.2585.
https://doi.org/10.1103/PhysRevA.36.2585