Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (2) P. 119-128 (2020).
DOI:
https://doi.org/10.15407/spqeo23.02.119
References
1. Lazur V.Yu., Khoma M.V. Distorted wave theories for one- and two-electron capture in fast atomic collisions. Advances in Quantum Chemistry. 2013. 65. P. 363-405. http://dx.doi.org/10.1016/b978-0-12-396455-7.00013-3. https://doi.org/10.1016/B978-0-12-396455-7.00013-3 | | 2. Lazur V.Yu., Aleksiy V.V., Karbovanets M.I., Khoma M.V., Myhalyna S.I. Taking the Сoulomb effects into account in the reactions of one-electron charge exchange. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2019. 22. P. 171-181. https://doi.org/10.15407/spqeo22.02.171. https://doi.org/10.15407/spqeo22.02.171 | | 3. Belkić Dž. Quantum Theory of High-energy Ion-atom Collisions. Taylor & Francis, London, 2008. https://doi.org/10.1201/9781584887294 | | 4. Lazur V.Yu., Khoma M.V., Janev R.K. Asymptotic properties of the three-Coulomb-center problem eZ1ZZ. Phys. Rev. A. 2006. 73. P. 032723. https://doi.org/10.1103/PhysRevA.73.032723. https://doi.org/10.1103/PhysRevA.73.032723 | | 5. Khoma M.V., Lazur V.Yu., Janev R.K. Asymptotic theory of the one- and two-electron processes in slow collisions of atomic ions with diatomic molecules. Phys. Rev. A. 2009. 80. P. 032706. https://doi.org/10.1103/PhysRevA.80.032706. https://doi.org/10.1103/PhysRevA.80.032706 | | 6. Belkić Dž. Total cross sections in five methods for two-electron capture by alpha particles from helium: CDW-4B, BDW-4B, BCIS-4B, CDW-EIS-4B and CB1-4B. JOMC. 2020. 58. P. 1133-1176.https://doi.org/10.1007/s10910-020-01123-4. https://doi.org/10.1007/s10910-020-01123-4 | | 7. Belkić Dž. Fast Ion-Atom and Ion-Molecule Collisions. World Scientific Publishing Co., Singapore, 2012. https://doi.org/10.1142/8485. https://doi.org/10.1142/8485 | | 8. Fischetti M.V., Vandenberghe W.G. Advanced Physics of Electron Transport in Semiconductors and Nanostructures. Springer International Publishing, Switzerland, 2016. https://doi.org/10.1007/978-3-319-01101-1 | | 9. Chao A., Chou W. Reviews of Accelerator Science and Technology - Vol. 10: The Future of Accelerators. World Scientific Publishing Co., Singapore, 2019. | | 10. Grozdanov T.P., Janev R.K., Lazur V.Yu. Asymptotic theory of the strongly asymmetric two-Coulomb-center problem. Phys. Rev. A. 1985. 32, No 6. P. 3425-3434. https://doi.org/10.1103/PhysRevA.32.3425. https://doi.org/10.1103/PhysRevA.32.3425 | | 11. Gorvat P.P., Lazur V.Yu. Asymptotic behavior of charge-exchange amplitude at relativistic velocities and binding energies. Theor. and Math. Phys. 1993. 95, No 3. P. 708-724. https://doi.org/10.1007/BF01017517. https://doi.org/10.1007/BF01017517 | | 12. Gorvat P.P., Lazur V.Yu., Presnyakov L.P., Uskov D.B. Asymptotic behavior of charge-exchange amplitude. Theor. and Math. Phys. 1992. 91, No 1. P. 373-384. https://doi.org/10.1007/BF01019830. https://doi.org/10.1007/BF01019830 | | 13. Lazur V.Yu., Mashika Yu.Yu., Janev R.K., Grozdanov T.P. Quasi-crossing of Rydberg terms in the problem of two Coulomb centers with strongly differing charges. Theor. and Math. Phys. 1991. 87, No 1. P. 401-410. https://doi.org/10.1007/BF01016580. https://doi.org/10.1007/BF01016580 | | 14. Belkić Dž., Gayet R., Salin A. Electron capture in high-energy ion-atom collisions. Phys. Repts. 1979. 56, No 6. P. 279-369. https://doi.org/10.1016/0370-1573(79)90035-8. https://doi.org/10.1016/0370-1573(79)90035-8 | | 15. Dodd L.R., Greider K.R. Rigorous solution of three-body scattering processes in the distorted-wave formalism. Phys. Rev. A. 1966. 146. P. 675-686. https://doi.org/10.1103/PhysRev.146.675. https://doi.org/10.1103/PhysRev.146.675 | | 16. Nordsieck A. Reduction of an integral in the theory of Bremsstranhlung. Phys. Rev. 1954. 93. P. 785-787. https://doi.org/10.1103/PhysRev.93.785. https://doi.org/10.1103/PhysRev.93.785 | | 17. Barnett C.F., Harrison M.F.A. Plasmas: Applied Atomic Collision Physics. Academic Press, London, 1984. | | 18. Crothers D.S.F., McCarroll R. Correlated continuum distorted-wave resonant double electron capture in He2+-He collision. J. Phys. B. 1987. 20, No 12. P. 2835-2842. https://doi.org/10.1088/0022-3700/20/12/027. https://doi.org/10.1088/0022-3700/20/12/027 | | 19. Gayet R., Rivarola R.D., Salin A. Double electron capture by fast nuclei. J. Phys. B. 1981. 14, No 9. P. 2421-2427. https://doi.org/10.1088/0022-3700/20/12/027. https://doi.org/10.1088/0022-3700/20/12/027 | | 20. De Castro Faria N.V., Freire F.L. Jr., de Pinho A.G. Electron loss and capture by fast helium ions in noble gases. Phys. Rev. A. 1988. 37, No 1. P. 280-283. https://doi.org/10.1103/PhysRevA.37.280. https://doi.org/10.1103/PhysRevA.37.280 | | 21. Pluvinage Ph. Fonction d'onde approchée à un paramètre pour l'état fondamental des atomes à deux électrons. Ann. Phys. (Paris). 1950. 12, No 5. P. 145-152. https://doi.org/10.1051/anphys/195012050145. https://doi.org/10.1051/anphys/195012050145 | | 22. Ghosh S., Dhara A., Mandal C.R., Purkait M. Double-electron-capture cross sections from helium by fully stripped projectile ions in intermediate-to-high energies. Phys. Rev. A. 2008. 78. P. 042708. https://doi.org/10.1103/PhysRevA.78.042708. https://doi.org/10.1103/PhysRevA.78.042708 | | 23. Purkait M., Sounda S., Dhara A., Mandal C.R. Double-charge-transfer cross sections in inelastic collisions of bare ions with helium atoms. Phys. Rev. A. 2006. 74. P. 042723. https://doi.org/10.1103/PhysRevA.74.042723. https://doi.org/10.1103/PhysRevA.74.042723 | | 24. Gravielle M.S., Miraglia J.E. Double-electron capture as a two-step process. Phys. Rev. A. 1992. 45, No 5. P. 2965-2973. https://doi.org/10.1103/PhysRevA.45.2965. https://doi.org/10.1103/PhysRevA.45.2965 | | 25. DuBois R.D. Double-electron capture as a two-step process. Phys. Rev. A. 1987. 36, No 6. P. 2585-2593. https://doi.org/10.1103/PhysRevA.36.2585. https://doi.org/10.1103/PhysRevA.36.2585 | |
|
|