Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (2) P. 129-135 (2020).
DOI: https://doi.org/10.15407/spqeo23.02.129


References

1. Lev B.I. and Kim J.-H. Ground state and peculiarity of particle interactions in liquid crystal colloids. Eur. Phys. J. E. 2020. 43. P. 1-7. https://doi.org/10.1140/epje/i2020-11930-7.
https://doi.org/10.1140/epje/i2020-11930-7
2. Zhang L., Shi Z., He T. et al. Effects of the chain length of crosslinking agent and dye-doped amount on the electro-optical properties of polymer-dispersed liquid crystal films prepared by nucleophile-initiated thiol-ene click reaction. Liquid Crystals. 2020. 47. P. 42-55. https://doi.org/10.1080/02678292.2019.1626924.
https://doi.org/10.1080/02678292.2019.1626924
3. Pianelli A., Parka J., Perkowski P. et al. Inves-tigations of dual-frequency nematic liquid crystals doped with dichroic dye. Liquid Crystals. 2019. 46. P. 1001-1012. https://doi.org/10.1080/02678292.2018.1550821.
https://doi.org/10.1080/02678292.2018.1550821
4. Kovalchuk O.V., Studenyak I.P., Izai V.Yu. et al. Saturation effect for dependence of the electrical conductivity of planar oriented nematic liquid crystal 6CB on the concentration of Cu7PS6 nanoparticles. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017. 20. P. 437-441. https://doi.org/10.15407/spqeo20.04.437.
https://doi.org/10.15407/spqeo20.04.437
5. Studenyak I.P., Demko P.Yu., Bendak A.V. et al. Influence of superionic nanoparticles Cu6PS5I on dielectric properties of nematic liquid crystal 6СНВТ. Semiconductor Physics, Quantum Elec-tronics & Optoelectronics. 2015. 18. P. 205-208. https://doi.org/10.15407/spqeo18.02.205.
https://doi.org/10.15407/spqeo18.02.205
6. Kovalchuk O.V., Luchynets M.M., Studenyak I.P. et al. Influence of nanoparticles of Сu7GeS5I superionic conductor on dielectric properties of planar-oriented nematic liquid crystal 6СВ. Semi-conductor Physics, Quantum Electronics & Opto-electronics. 2018. 21. P. 407-411. https://doi.org/10.15407/spqeo21.04.407.
https://doi.org/10.15407/spqeo21.04.407
7. Studenyak I.P., Kovalchuk O.V., Pogodin A.I. et al. Influence of cation substitution on dielectric properties and electric conductivity of 6CB liquid crystal with Me7GeS5I (Me = Ag, Cu) superionic nanoparticles. Mol. Cryst. Liquid Cryst. 2020. To be published.
8. Nagel A., Range K.-J. Die Kristallstruktur von Ag7GeS5I. Z. Naturforsch. B. 1979. 34, No 2. P. 360-362. http://doi.org/10.1515/znb-1979-0246.
https://doi.org/10.1515/znb-1979-0246
9. Nilges T., Pfitzner A. A structural differentiation of quaternary copper argyrodites: Structure - property relations of high temperature ion conductors. Z. Kristallogr. 2005. 220. P. 281-294. http://doi.org/10.1524/zkri.220.2.281.59142.
https://doi.org/10.1524/zkri.220.2.281.59142
10. Laqibi M., Cros B., Peytavin S., Ribes M. New silver superionic conductors Ag7XY5Z (X = Si, Ge, Sn; Y = S, Se; Z = Cl, Br, I) - synthesis and electrical properties. Solid State Ionics. 1987. 23, No 1-2. P. 21-26. https://doi.org/10.1016/0167-2738(87)90077-4.
https://doi.org/10.1016/0167-2738(87)90077-4
11. Orliukas A.F., Kazakevicius E., Kezionis A., Salkus T., Studenyak I.P., Buchuk R.Yu., Prits I.P., Panko V.V. Preparation, electric conductivity and dielectrical properties of Cu6PS5I-based superionic composites. Solid State Ionics. 2009. 180, No 2-3. P. 183-186. https://doi.org/10.1016/j.ssi.2008.12.005.
https://doi.org/10.1016/j.ssi.2008.12.005
12. Studenyak I.P., Izai V.Yu., Studenyak V.I. et al. Influence of Cu6PS5І superionic nanoparticles on the dielectric properties of 6СВ liquid crystal. Liquid Crystals. 2017. 44, No 5. P. 897-903. https://doi.org/10.1080/02678292.2016.1254288.
https://doi.org/10.1080/02678292.2016.1254288
13. Šalkus T., Kazakevičius E., Banys J., Kranjčec M., Chomolyak A.A., Neimet Yu.Yu., Studenyak I.P. Influence of grain size effect on electrical properties of Cu6PS5I superionic ceramics. Solid State Ionics. 2014. 262. P. 597-600. https://doi.org/10.1016/j.ssi.2013.10.040.
https://doi.org/10.1016/j.ssi.2013.10.040
14. Studenyak I.P., Kranjčec M., Izai V.Yu., Chomolyak A.A., Vorohta M., Matolin V., Cserhati C., Kökényesi S. Structural and temperature-related disordering studies of Cu6PS5I amorphous thin films. Thin Solid Films. 2012. 520, No 6. P. 1729-1733. https://doi.org/10.1016/j.tsf.2011.08.043.
https://doi.org/10.1016/j.tsf.2011.08.043
15. Twarowski A.J., Albrecht A.C. Depletion layer in organic films: Low frequency measurements in polycrystalline tetracene. J. Chem. Phys. 1979. 70. P. 2255-2261. https://doi.org/10.1063/1.437729.
https://doi.org/10.1063/1.437729
16. Barsukov E., Macdonald J.R. Impedance Spectro-scopy. Theory, Experiment and Applications. John Wiley & Sons. 2005.
https://doi.org/10.1002/0471716243
17. Kravchuk R., Koval'chuk O., Yaroshchuk O. Filling initiated ion transport processes in liquid crystal cell. Mol. Cryst. Liquid Cryst. 2002. 384. P. 111-119. https://doi.org/10.1080/713738781.
https://doi.org/10.1080/713738781
18. Mott N.F. and Davis E.A. Electronic Processes in Non-crystalline Materials. Oxford University Press, 2012.