Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (2) P. 146-154 (2020).
DOI: https://doi.org/10.15407/spqeo23.02.146


References

1. Tingyu Xue, Hua Zhao Cuiling Meng et al. Fast response beam coupling in dye doped liquid crystal cells sandwiched with ZnSe coated substrates. MRS Proc. 2015. 1748. mrsf14-1748-ii05-01. https://doi.org/10.1557/opl.2015.666.
https://doi.org/10.1557/opl.2015.666
2. Li Zhang, Zhiqing Shi, Taoyu He et al. Effects of the chain length of crosslinking agent and dye-doped amount on the electro-optical properties of polymer-dispersed liquid crystal films prepared by nucleophile-initiated thiol-ene click reaction. Liquid Crystals. 2020. 47. P. 42-55. https://doi.org/10.1080/02678292.2019.1626924.
https://doi.org/10.1080/02678292.2019.1626924
3. Pianelli A., Parka J., Perkowski P. et al. Inves-tigations of dual-frequency nematic liquid crystals doped with dichroic dye. Liquid Crystals. 2019. 46. P. 1001-1012. https://doi.org/10.1080/02678292.2018.1550821.
https://doi.org/10.1080/02678292.2018.1550821
4. Middha M., Kumar R., Raina K.K. Memory effects in chiral nematic liquid crystals doped with functionalised single-walled carbon nanotubes. Liquid Crystals. 2015. 42. P. 1028-1035. https://doi.org/10.1080/02678292.2015.1015180.
https://doi.org/10.1080/02678292.2015.1015180
5. Akkurt F. Characterisation of azo dye and carbon nanoparticle doped guest-host liquid crystalline matrix. Liquid Crystals. 2014. 41. P. 1269-1276. https://doi.org/10.1080/02678292.2014.915590.
https://doi.org/10.1080/02678292.2014.915590
6. Indebetouw G., Klysubun P. Correlation between photorefractivity, photoconductivity, and dark con-ductivity in dye-doped, low molecular mass nema-tic liquid crystal cells. Opt. Mater. 2004. 27. P. 221 -233. https://doi.org/10.1016/j.optmat.2004.03.011.
https://doi.org/10.1016/j.optmat.2004.03.011
7. Klysubun P., Indebetouw G. On the possible correlation between dark conductivity, photocon-ductivity, and photorefractivity in dye-doped nema-tic liquid crystals. J. Appl. Phys. 2002. 92. P. 2528-2533. https://doi.org/10.1063/1.1495887.
https://doi.org/10.1063/1.1495887
8. Yang D.-K., Wu S.T. Fundamentals of Liquid Crystal Devices. John Wiley, New York. 2006.
https://doi.org/10.1002/0470032030
9. Blinov L.M., Chigrinov V.G., Electrooptic Effects in Liquid Crystal Materials. Springer-Verlag, New York, 1994.
https://doi.org/10.1007/978-1-4612-2692-5
10. Wolarz E., Bauman D., Jadżyn J., Dąbrowski R. Prenematic self-assembling of mesogenic molecules in isotropic liquid and orientational order in nematic phase. Acta Physica Polonica, Series A. 2011. 120, No 3. P. 447-454. https://doi.org/10.12693/APhysPolA.120.447.
https://doi.org/10.12693/APhysPolA.120.447
11. Twarowski A.J., Albrecht A.C. Depletion layer in organic films: Low frequency measurements in polycrystalline tetracene. J. Chem. Phys. 1979. 70. P. 2255-2261. https://doi.org/10.1063/1.437729.
https://doi.org/10.1063/1.437729
12. Barsukov E., Macdonald J.R. Impedance Spectro-scopy. Theory, Experiment and Applications. John Wiley & Sons, 2005.
https://doi.org/10.1002/0471716243
13. Vovk V.E., Kovalchuk A.V., Lebovka N. Impact of homeotropic and planar alignment of liquid crystals medium on the structure and dielectric properties of modified fullerene mC60+E25 mixtures. Liquid Crystals. 2012. 39. P. 77-86. https://doi.org/10.1080/02678292.2011.611902.
https://doi.org/10.1080/02678292.2011.611902
14. Kravchuk R., Koval'chuk O., Yaroshchuk O. Filling initiated ion transport processes in liquid crystal cell. Mol. Cryst. Liquid Cryst. 2002. 384, No 1. P. 111-119. https://doi.org/10.1080/713738781.
https://doi.org/10.1080/713738781
15. Koval'chuk A.V. Relaxation process and charge transport across liquid crystal - electrode interface. J. Phys: Cond. Matter. 2001. 13. P. 10333-10345.
https://doi.org/10.1088/0953-8984/13/46/306