Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (2) P. 160-167 (2020).
DOI: https://doi.org/10.15407/spqeo23.02.160


References

1. Boles M.A., Engel M., Talapin D.V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016. 116. P. 11220-11289. https://doi.org/10.1021/acs.chemrev.6b00196.
https://doi.org/10.1021/acs.chemrev.6b00196
2. Pietryga J.M., Park Y.S., Lim J., Fidler A.F., Wan Ki Bae, Brovelli S., Klimov V.I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016. 116. P. 10513-10622. https://doi.org/10.1021/acs.chemrev.6b00169.
https://doi.org/10.1021/acs.chemrev.6b00169
3. Scheele M., Brütting W., Schreiber F. Coupled organic-inorganic nanostructures (COIN). Phys. Chem. Chem. Phys. 2015. 17. P. 97-111. https://doi.org/10.1039/c4cp03094j.
https://doi.org/10.1039/C4CP03094J
4. Kovalenko M.V., Manna L., Cabot A. et al. Prospects of nanoscience with nanocrystals. ACS Nano. 2015. 9. P. 1012-1057.https://doi.org/10.1021/nn506223h.
https://doi.org/10.1021/nn506223h
5. Gaponenko S.V. Optical Properties of Semiconductor Nanocrystals. Cambridge University Press, 1998.https://doi.org/10.1017/CBO9780511524141.
https://doi.org/10.1017/CBO9780511524141
6. Jing L., Kershaw S.V., Li Y. et al. Aqueous based semiconductor nanocrystals. Chem. Rev. 2016. 116. P. 10623−10730.https://doi.org/10.1021/acs.chemrev.6b00041.
https://doi.org/10.1021/acs.chemrev.6b00041
7. Lesnyak V., Gaponik N., Eychmu A. Colloidal semiconductor nanocrystals: the aqueous approach. Chem. Soc. Rev. 2013. 42. P. 2905-2929. https://doi.org/10.1039/c2cs35285k.
https://doi.org/10.1039/C2CS35285K
8. Stroyuk O., Raevskaya A., Spranger F. et al. Origin and dynamics of highly efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag-In-S quantum dots. J. Phys. Chem. C. 2018. 122. P. 13648-13658.https://doi.org/10.1021/acs.jpcc.8b00106.
https://doi.org/10.1021/acs.jpcc.8b00106
9. Stroyuk O., Raevskaya A., Selyshchev O. et al. "Green" aqueous synthesis and optical characterization of colloidal Cu2ZnSnS4 nanocrystal inks. Sci. Rep. 2018. 8. P. 13677. https://doi.org/10.1038/s41598-018-32004-1.
https://doi.org/10.1038/s41598-018-32004-1
10. Raevskaya A.E., Stroyuk A.L., Kuchmiy S.Y., Dzhagan V.M., Valakh M.Y., Zahn D.R.T. Optical study of CdS- and ZnS-passivated CdSe nanocrystals in gelatin films. J. Phys. Condens. Matter. 2007. 19. P. 386237. https://doi.org/10.1088/0953-8984/19/38/386237.
https://doi.org/10.1088/0953-8984/19/38/386237
11. Gaponik N., Talapin D.V., Rogach A.L. et al. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B. 2002. 106. P. 7177-7185.
https://doi.org/10.1021/jp025541k
12. Triboulet R. Fundamentals of the CdTe synthesis. J. Alloys Compd. 2004. 371. P. 67-71. https://doi.org/10.1016/j.jallcom.2003.06.006.
https://doi.org/10.1016/j.jallcom.2003.06.006
13. Bodnarchuk M.I., Kovalenko M.V., Stroyuk A.L., Kuchmii S.Y. Photoinduced electron transfer between CdS and CdTe nanoparticles in colloidal solutions. Theor. Exp. Chem. 2004. 40. P. 279-284.
https://doi.org/10.1023/B:THEC.0000049074.31907.81
14. Peng Z.A., Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001. 123. P. 183-184. https://doi.org/10.1021/ja003633m.
https://doi.org/10.1021/ja003633m
15. Kapush O.A., Trishchuk L.I., Tomashik V.N., Tomashik Z.F., Boruk S.D., Zynyuk O.V. Preparation of concentrated monodisperse colloidal solutions of CdTe nanocrystals. Russ. J. Inorg. Chem. 2015. 60. P. 1258-1262.https://doi.org/10.1134/S0036023615100083.
https://doi.org/10.1134/S0036023615100083
16 Kapush O.A., Trishchuk L.I., Tomashik V.N. et al. Effect of medium pH on the optical properties of CdTe nanocrystals at colloidal synthesis and postsynthetic treatment. Russ. J. Inorg. Chem. 2016. 61. P. 554-559.https://doi.org/10.1134/S0036023616050089.
https://doi.org/10.1134/S0036023616050089
17. Poznyak S.K., Osipovich N.P., Shavel A. et al. Size-dependent electrochemical behavior of thiol-capped CdTe nanocrystals in aqueous solution. J. Phys. Chem. B. 2005. 109. P. 1094-1100. https://doi.org/10.1021/jp0460801.
https://doi.org/10.1021/jp0460801
18. Schneider R., Weigert F., Lesnyak V., Leubner S., Lorenz T., Behnke T. pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D2O. Phys. Chem. Chem. Phys. 2016. 18. P. 19083-19092. https://doi.org/10.1039/c6cp03123d.
https://doi.org/10.1039/C6CP03123D
19. Kapush O.A., Trishchuk L.I., Tomashik V.N., Tomashik Z.F. Effect of thioglycolic acid on the stability and photoluminescence properties of colloidal solutions of CdTe nanocrystals. Inorg. Mater. 2014. 50. P. 13-18.https://doi.org/10.1134/S0020168514010105.
https://doi.org/10.1134/S0020168514010105
20. Schulz D.L., Pehnt M., Rose D.H. et al. CdTe thin films from nanoparticle precursors by spray deposition. Chem. Mater. 1997. 9. P. 889-900. https://doi.org/10.1021/cm9601547.
https://doi.org/10.1021/cm9601547
21. Kapush O.A., Kalytchuk S.M., Trishchuk L.I. et al. Influence of the dispersion environment nature on photoluminescence properties of CdTe nanocrystals in colloidal solutions. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. 15, No 3. P. 223-226. https://doi.org/10.15407/spqeo15.03.223.
https://doi.org/10.15407/spqeo15.03.223