Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (2) P. 186-192 (2020).
DOI: https://doi.org/10.15407/spqeo23.02.186


References

1. Nagel A., Range K.-J. Die Kristallstruktur von Ag7GeS5I. Z. Naturforsch. 1979. 34b. P. 360-362. https://doi.org/10.1515/znb-1979-0246.
https://doi.org/10.1515/znb-1979-0246
2. Nilges T., Pfitzner A. A structural differentiation of quaternary copper argyrodites: Structure - property relations of high temperature ion conductors. Z. Kristallogr. 2005. 220. P. 281-294. https://doi.org/10.1524/zkri.220.2.281.59142.
https://doi.org/10.1524/zkri.220.2.281.59142
3. Studenyak I.P., Kranjčec M., Kovacs Gy.Sh., Desnica-Frankovic I.D., Molnar A.A., Panko V.V., Slivka V.Yu. Electrical and optical absoprtion studies of Cu7GeS5I fast-ion conductor. J. Phys. Chem. Solids. 2002. 63. P. 267-271. https://doi.org/10.1016/S0022-3697(01)00139-1.
https://doi.org/10.1016/S0022-3697(01)00139-1
4. Laqibi M., Cros B., Peytavin S., Ribes M. New silver superionic conductors Ag7XY5Z (X = Si, Ge, Sn; Y = S, Se; Z = Cl, Br, I) - synthesis and elec-trical properties. Solid State Ionics. 1987. 23. P. 21-26. https://doi.org/10.1016/0167-2738(87)90077-4.
https://doi.org/10.1016/0167-2738(87)90077-4
5. Orliukas A.F., Kazakevicius E., Kezionis A., Salkus T., Studenyak I.P., Buchuk R.Yu., Prits I.P., Panko V.V. Preparation, electric conductivity and dielectrical properties of Cu6PS5I-based superionic composites. Solid State Ionics. 2009. 180. P. 183-186. https://doi.org/10.1016/j.ssi.2008.12.005.
https://doi.org/10.1016/j.ssi.2008.12.005
6. Studenyak I.P., Izai V.Yu., Studenyak V.I., et al. Influence of Cu6PS5І superionic nanoparticles on the dielectric properties of 6СВ liquid crystal. Liquid Crystals. 2017. 44. P. 897-903. https://doi.org/10.1080/02678292.2016.1254288.
https://doi.org/10.1080/02678292.2016.1254288
7. Šalkus T., Kazakevičius E., Banys J., Kranjčec M., Chomolyak A.A., Neimet Yu.Yu., Studenyak I.P. Influence of grain size effect on electrical properties of Cu6PS5I superionic ceramics. Solid State Ionics. 2014. 262. P. 597-600. https://doi.org/10.1016/j.ssi.2013.10.040.
https://doi.org/10.1016/j.ssi.2013.10.040
8. Studenyak I.P., Kranjčec M., Izai V.Yu., Chomolyak A.A. et al. Structural and temperature-related disordering studies of Cu6PS5I amorphous thin films. Thin Solid Films. 2012. 520. P. 1729-1733. https://doi.org/10.1016/j.tsf.2011.08.043.
https://doi.org/10.1016/j.tsf.2011.08.043
9. Bilanchuk V.V., Rati Y.Y., Studenyak I.P., Banys J. Electrical conductivity and absorption edge in Cu7SiS5I crystals. Scientific Herald of Uzhgorod University: Ser. Physics. 2013. 34. P. 34-39. https://dspace.uzhnu.edu.ua/jspui/handle/lib/2622.
https://doi.org/10.24144/2415-8038.2013.34.34-39
10. Studenyak I.P., Kokhan O.P., Kranjčec M., Hrechyn M.I., Panko V.V. Crystal growth and phase interaction studies in Cu7GeS5I-Cu7SiS5I superionic system. J. Cryst. Growth. 2007. 306. P. 326-329. https://doi.org/10.1016/j.jcrysgro.2007.05.029.
https://doi.org/10.1016/j.jcrysgro.2007.05.029
11. Studenyak I.P., Kranjčec M., Bilanchuk V.V., Dziaugys A., Banys J., Orliukas A.F. Influence of cation substitution on electrical conductivity and optical absorption edge in Cu7(Ge1-xSix)S5I mixed crystals. Semiconductor Physics, Quantum Elec-tronics & Optoelectronics. 2012. 15. P. 227-231.
https://doi.org/10.15407/spqeo15.03.227
12. Kranjčec M., Studenyak I.P., Bilanchuk V.V. et al. Compositional behaviour of Urbach absorption edge and exciton-phonon interaction parameters in Cu6PS5I1-xBrx superionic mixed crystals. J. Phys. Chem. Solids. 2004. 65. P. 1015-1020. https://doi.org/10.1016/j.jpcs.2003.10.061.
https://doi.org/10.1016/j.jpcs.2003.10.061
13. Tinoco T., Quintero M., Rinkon C. Variation of the energy gap with composition in AIBIIIC2VI chalcopyrite-structure alloys. Phys. Rev. B. 1991. 44. P. 1613-1615. https://doi.org/10.1103/physrevb.44.1613.
https://doi.org/10.1103/PhysRevB.44.1613
14. Zunger A., Jaffe E. Structural origin of optical bowing in semiconductors alloys. Phys. Rev. Lett. 1983. 51. P. 662-665. https://doi.org/10.1103/PhysRevLett.51.662.
https://doi.org/10.1103/PhysRevLett.51.662
15. Jaffe E., Zunger A. Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys. Rev. B. 1984. 29. P. 1882-1906. https://doi.org/10.1103/PhysRevB.29.1882.
https://doi.org/10.1103/PhysRevB.29.1882
16. Studenyak I.P., Kranjčec M., Kovacs Gy.Sh., Des-nica-Frankovic I.D. et al. Excitonic processes and Urbach rule in Cu6P(S1-xSex)5I crystals in the sulfur-rich region. Mat. Res. Bull. 2001. 36. P. 123-135. https://doi.org/10.1016/S0025-5408(01)00508-6.
https://doi.org/10.1016/S0025-5408(01)00508-6
17. Poelman D., Smet P.F. Methods for the deter-mination of the optical constants of thin films from single transmission measurements: A critical review. J. Phys. D: Appl. Phys. 2003. 36. P. 1850-1857. https://doi.org/10.1088/0022-3727/36/15/316.
https://doi.org/10.1088/0022-3727/36/15/316
18. Wemple S.H., Di Domenico M. Behaviour of the dielectric constant in covalent and ionic materials. Phys. Rev. B. 1971. 3. P. 1338-1352. https://doi.org/10.1103/PhysRevB.3.1338.
https://doi.org/10.1103/PhysRevB.3.1338
19. Tanaka K. Optical properties and photoinduced changes in amorphous As-S films. Thin Solid Films. 1980. 66. P. 271-279. https://doi.org/10.1016/0040-6090(80)90381-8.
https://doi.org/10.1016/0040-6090(80)90381-8
20. Tubbs M.R. A spectroscopic interpretation of crys-talline ionicity. phys. status solidi (b). 1970. 41. P. K61-K64. https://doi.org/10.1002/pssb.19700410164.
https://doi.org/10.1002/pssb.19700410164
21. Studenyak I.P., Pogodin A.I., Studenyak V.I. et al. Electrical properties of copper- and silver-con-taining superionic (Cu1-xAgx)7SiS5I mixed crystals with argyrodite structure. Solid State Ionics. 2020. 345. P. 115183(6). https://doi.org/10.1016/j.ssi.2019.115183.
https://doi.org/10.1016/j.ssi.2019.115183