Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (2) P. 201-207 (2020).
DOI: https://doi.org/10.15407/spqeo23.02.201


References

1. Bergh A.A., Dean P.J. Light-Emitting Diodes. Clarendon Press, Oxford, 1976.
2. Chevalier J., Mariette K., Diguet D., Poiblaud G. Direct experimental observation of band-structure effects on GaAs1-хPх(N) alloys by radiative lifetime measurement. Appl. Phys. Lett. 1976. 28, No 7. P. 375-377. https://doi.org/10.1063/1.88786.
https://doi.org/10.1063/1.88786
3. Wu J., Chen S., Seeds A., Liu H. Quantum dot optoelectronic devices: Lasers, photodetectors and solar cells. J. Phys. D: Appl. Phys. 2015. 48, No 36. P. 363001. https://doi.org/10.1088/0022-3727/48/36/363001.
https://doi.org/10.1088/0022-3727/48/36/363001
4. Munoz E., Garsia F., Jimenez B., Galleja E., Gomez A., Alcober V. EL2-related defects in neutron irradiated GaAs1-хPх alloys. Appl. Phys. Lett. 1985. 47, No 8. P. 798-800. https://doi.org/10.1063/1.95987.
https://doi.org/10.1063/1.95987
5. Garsia F., Munoz E., Galleja E., Alcober V. Damage constant and deep-level transient spectro-scopy in neutron irradiated GaAsP alloys. J. Electron. Mater. 1986. 15. P. 133-139. https://doi.org/10.1007/BF02655326.
https://doi.org/10.1007/BF02655326
6. Rose B.H., Barnes C.E. Proton damage effects on light-emitting diodes. J. Appl. Phys. 1982. 53, No 3. P. 1772-1780. https://doi.org/10.1063/1.331649.
https://doi.org/10.1063/1.331649
7. Johnston A.H., Rax B.I., Selva L.E., Barnes C.E. Proton degradation of light-emitting diodes. IEEE Trans. Nucl. Sci. 1999. 46, No 6. P. 1781-1789. https://doi.org/ 10.1109/23.819154.
https://doi.org/10.1109/23.819154
8. Thompson M.W. Defects and Radiation Damage in Metals. Cambridge University Press, UK, 1974.
9. Korshunov F.P., Gatalskij G.V., Ivanov G.M. Radiation Effects in Semiconductor Devices. Nauka i tekhnika, Minsk, 1978 (in Russian).
10. Brudnyi V.N. Radiation defects in semiconductors. Vestnik Tomskogo Hosudarstvennogo Universiteta. 2005. 285. P. 95-102 (in Russian).
11. Kozlov V.A., Kozlovski V.V. Doping of semiconductors using with radiation defects produced by irradiation protons and alfa particles. Semiconductors. 2001. 35, No 7. P. 735-761. https://doi.org/10.1134/1.1385708.
https://doi.org/10.1134/1.1385708
12. Ardyshev M.V., Ardyshev V.M., Kryuchkov Yu.Yu. The accumulation of radiation defects in gallium arsenide that has been subjected to pulsed and continuous ion implantation. Semiconductors. 2005. 39, No 3. P. 293-295. https://doi.org/10.1134/1.1882789.
https://doi.org/10.1134/1.1882789
13. Gopal V. A new approach to investigate leakage current mechanisms in infrared photodiodes from illuminated current-voltage characteristics. J. Appl. Phys. 2014. 116, No 8. P. 084502. https://doi.org/10.1063/1.4893899.
https://doi.org/10.1063/1.4893899
14. Olikh O.Ya., Gorb A.M., Chupryna R.G., Pristay-Fenenkov O.V. Acousto-defect interaction in irradiated and non-irradiated silicon n+-p structures. J. Appl. Phys. 2018. 123, No 16. P. 161573. https://doi.org/10.1063/1.5001123.
https://doi.org/10.1063/1.5001123
15. Gaydar G., Konoreva O., Maliy Ye. et al. About bond model of S-type negative differential resistance in GaP LEDs. Superlattices and Micro-structures. 2017. 104. P. 316-320. https://doi.org/10.1016/j.spmi.2017.02.042.
https://doi.org/10.1016/j.spmi.2017.02.042
16. Sze S.M., Ng Kwok K. Physics of Semiconductor Devices. Wiley & Sons, Inc., 2006.
https://doi.org/10.1002/0470068329
17. Stanley A.G. Comparison of light emitting diodes in a space radiation environment. IEEE Trans. Nuclear Sci. 1970. 17, No 6. P. 239-244. https://doi.org/10.1109/TNS.1970.4325799.
https://doi.org/10.1109/TNS.1970.4325799