Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (2) P. 214-219 (2020).
DOI: https://doi.org/10.15407/spqeo23.02.214


References

1. Brailko A.A. Method for permanent monitoring the cleanness of aviation fuel by using the technological scheme of fueling the aircrafts. Candidate's thesis (Technical sciences), Federal State Budget Educational Institution for Higher Education "Moscow State Technical University of Civil Aviation". Moscow, 2017 (in Russian).
2. Gishvarov A.S. Exploitation Reliability of Fuel Systems in Aircrafts (Handbook). Ufa State Avia-tion-and-Technical University, 2008 (in Russian).
3. Boichenko S.V., Yakovleva A.V., Azarenkova A.O., Shkil'nyuk I.O. Elaboration of technical regulations concerning the requirements to aviation benzine and fuels for jet engines. Herald of National Transport University of Ukraine. Pt 1: Series "Technical Sciences". Kyiv, NTUU, 2014, issue 30 (in Ukrainian).
4. Yakovleva A.V., Boichenko S.V., Vovk O.A. Impact of aviation fuel quality on flight safety and environment. Nauka Innov. 2013. 9, No 4. P. 25-30 (in Russian). https://doi.org/10.15407/scin9.04.025.
https://doi.org/10.15407/scin9.04.025
5. Cotton D.H., Jenkins D.R. The determination of very low concentrations of copper, iron and lead in hydrocarbon fuels by atomic fluorescence spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy. 1970. 25, Issue 6. P. 283-288. https://doi.org/10.1016/0584-8547(70)80032-5.
https://doi.org/10.1016/0584-8547(70)80032-5
6. Delfino J.R., da Silva J.L., Marques A.L.B., Stradiotto N.R. Antioxidants detection in aviation biokerosene by high-performance liquid chromatography using gold nanoparticles anchored in reduced graphene oxide. Fuel. 2020. 260. P. 116315. https://doi.org/10.1016/j.fuel.2019.116315.
https://doi.org/10.1016/j.fuel.2019.116315
7. Doyle A., Saavedra A., Tristão M.L.B., Aucelio R.Q. Determination of S, Ca, Fe, Ni and V in crude oil by energy dispersive X-ray fluorescence spectrometry using direct sampling on paper substrate. Fuel. 2015. 162. P. 39-46. https://doi.org/10.1016/j.fuel.2015.08.072.
https://doi.org/10.1016/j.fuel.2015.08.072
8. Maslov V.P., Dorozinsky G.V., Khrystosenko R.V. et al. Surface plasmon resonance - a promising method for estimating the quality of motor oil. Trans & Motauto World J. 2017. 2, No 1. P. 41-44.
9. Dorozinska H.V., Dorozinsky G.V., Kukla O.L., Matvienko L.M., Mamykin A.S., Maslov V.P. Highly-informative complex method for determination of the type of motor oil. Tekhnologiya i konstruirovaniye v elektronnoy apparature. 2019. Nos 3-4. P. 36-44 (in Russian). 10. Cunha D.A., Montes L.F., Castro E.V.R., Barbosa L.L. NMR in the time domain: A new methodology to detect adulteration of diesel oil with kerosene. Fuel. 2016. 166. P. 79-85. https://doi.org/10.1016/j.fuel.2015.10.078.
https://doi.org/10.1016/j.fuel.2015.10.078
11. Yadav G.C., Prakash S., Sharma G., Kumar S., Singh V. Detection of kerosene adulteration in automobile fuel with a novel metal clad planar waveguide. Optics and Laser Technology. 2019. 119. P. 105589. https://doi.org/10.1016/j.optlastec.2019.105589.
https://doi.org/10.1016/j.optlastec.2019.105589