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Abstract. The progress in solution of problems involving non-relativistic fast ion-atom 

collisions with two actively participating electrons has been reviewed. Leading quantum 

mechanical methods have been analyzed in the framework of four-body scattering theory. 

A simple formalism has been described on the basis of the Dodd–Greider integral equations 

for a four-particle system, which were used to analyze the two-electron charge-exchange 

process at medium and high velocities of relative motion of particles. An important feature 

of the developed four-particle continuum distorted waves (CDW) method is the consistent 

preservation of the proper asymptotic limits of the wave functions of a colliding system in 

the entrance and exit channels of the reaction, which takes into account the long-range 

nature of Coulomb interactions. The amplitude of the two-electron charge-exchange 

reaction has been calculated in the approximation of the mechanism of simultaneous 

capture by an incident particle of two target electrons. The calculations using the presented 

theory have been made on the example of a two-electron capture reaction in high-energy 

He
2+

+He collisions. 
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1. Introduction 

Due to the rapid development of computing technology 

in the recent twenty years, the increasing interest of 

physics-theorists is paying attention to atomic collisions, 

in particular, one- and two-electron processes in the field 

of intermediate and high energies [1–7]. The choice of 

two-electron processes as a research object is also 

conditioned by the importance of multidisciplinary 

applications of high-energy ion-atom collisions, ranging 

from fusion to medical accelerators for radiotherapy [8, 

9]. A correct description of these collision processes 

requires the solution of a four-body problem with four 

active particles, namely: two nuclei and two electrons. 

Thus, the details of transfer of two electrons from the 

bound state of the target to the bound state of the 

projectile particle are sensitive to static electron-electron 

correlation in the initial and final states, as well as to the 

dynamic correlation during the collision. 

Let’s consider the problems of theoretical des-

cription of the processes including two-electron capture 
 


  2)2(

BABA
ZZ

     (1) 
 

in the region of intermediate and high velocities of 

collision of 
Z

A ions with B atoms. The cross-sections 

of two-electron processes (1) are quite large, and 

therefore the contribution of these processes of stripping 

the atoms during the ion collisions should be taken into 

account along with one-electron ionization and one-

electron charge exchange, especially in the region of 

intermediate collision velocities where charge-exchange 

and ionization cross-sections are values of one order. 

The asymptotic (at large internuclear distance) 

methods of atomic collision theory [4, 5, 10–13] deve-

loped in detail do not work in our case (1), since here, in 

contrast, small interatomic distances are significant. 
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Physical features of processes of atomic particles 

scattering at intermediate energies are caused by strong 

distortion of electronic wave functions due to the 

presence of long-range Coulomb interaction between 

particles, as a result of which the real electron transitions 

from initial to final states are accompanied by a number 

of other, virtual, transitions. To describe these specific 

features of the Coulomb interaction, various approximate 

variants of Schrödinger formalism are used, the most 

popular of which is the continuum distorted waves 

(CDW) method [14]. Using this method in the problem 

of one-electron ionization and one-electron charge  

exchange leads to good agreement of the theory with the 

experimental data at high and average relative velocities. 

The successful application of the CDW method is largely 

due to the correct consideration of Coulomb asymptotic 

conditions in both reaction channels. 

The advances made in the study of single-electron 

charge exchange and ionization processes based on the 

CDW method [1, 2] have prompted us to develop the 

Schrödinger formalism of the continuum distorted waves 

method to describe two-electron capture processes (1). 

2. General theory 

In the framework of nonrelativistic quantum mechanics, 

we consider collisions in a four-particle system α, β, γ1 

and γ2, in which three particles are coupled in the initial 

and final states, that is, they form a “compound” particle 
 

     2121 ,;,; ,  (2) 
 

where the symbol (λ; γ1, γ2) denotes the corresponding 

compound particle (λ = α, β – atomic nuclei and γ1, γ2 – 

electrons).  

Without loss of generality, the particle spins can be 

not accounted, since the Coulomb effects that are 

interested by us are independent of the spins. Let 

introduce full Hamiltonian of the system H0 + V, where 

H0 is the operator of the kinetic energy of four particles 

in the system of their center of mass, 

  



  ,

2

1

,,, 21
VVVVV

k
kk

,    (3) 

 

is the full interaction, 
i

V , – operator of pair interaction 

of the particles α and γ1, etc. 

We shall denote by Vα (Vβ) the effective interaction 

potential that forms a compound particle in the initial 

(final) reaction channel (2);   VHH 0     VHH 0  is 

the Hamiltonian of the initial (final) channel; 

  1
)(


 HWWG  – the Green function of the 

Hamiltonian H. We also define the operator   VV  

(λ = α, β). 

The transition amplitude 
T  from the channel “α” 

to channel “β” in prior formalism is given in the standard 

form: 
 

.

)(lim
0















U

WGT
iEW

   (4) 

 

Here, 
U  is the transition operator from the 

channel “α” to channel “β”;  ,   are the final and 

initial asymptotic states of a system, respectively, which 

are eigenfunctions of the operators Hβ, Hα with the 

eigenvalues E
~

, E
~

. On the energy surface E
~

 

EE  

~
; E is the total energy of a four-body system. 

For the transition operator in a three-particle 

system, we can write the integral equation first obtained 

by Dodd and Greider [15]. Acting on the same scheme as 

in the three-body case [15], it is possible to write a 

similar equation also for a transition operator in a four-

body system. To this aim, we present the channel 

interaction   ,  in the form of the sum of two 

terms     ww , the explicit form of which is 

given below. Here, wα and wβ are the distorting potentials 

in the input and output channels of the reaction (2). 

Corresponding to these potentials, we shall introduce the 

Møller wave operators: 
 

  







  wgwiwHE 11

1
,   (5) 

  







  wgwiwHE 11

1
,   (6) 

 

where  is an infinitely small positive number. 

In the prior formalism of this theory, the potential 

wβ is arbitrary, and the potential wα should not lead to the 

reorganization of the β channel, that is 

0lim 0  

 . 

In accord with analogy with the three-body case [2], 

we introduce the auxiliary potential  , which 

corresponds to an intermediate virtual channel “χ” and 

the Green operator   1



  iHEg . Then the 

equation for a four-body transition operator with 

accounting the notations used looks like 
 

  

 .)(

)(1*

































UGgw

wgwU
   (7) 

 

So far, this is an exact equation. Now let’s make an 

approximation for the transition operator 
U , namely, 

hold only the zero iteration in the right-hand side of the 
equation (7). As a result, we have the following 

representation of transition amplitude 
T  

 

   

     ,)DWB(

1

*

*































wwgT

wwgT

        (8) 
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where   







  wT *)DWB(  is the 

amplitude of the reaction (2) in the distorted wave Born 

approximation (DWB). The first term on the right-hand 

side of Eq. (8) corresponds to the direct electronic 

transitions from one atomic particle to another without 

additional re-scattering, while the second term describes 

two-step transitions of electrons through a continuous 

spectrum from a target atom to the states bound to the 

projectile particle. 

3. Amplitude of two-electron charge-exchange 

To describe the four-body system in the coordinate 

representation, we distinguish two standard sets of the 

reduced coordinates, r


, kx


 and r


, ks


 (k =1, 2). These 

values are expressed in the coordinates of the particles ir


 

and their masses mi (i = 1, 2, 3, 4) by formulas 
 

   24213   mrmrrrr


, 

 1
1

1

4 













 





  kmrrmrx

k

i

ikk


,    (9) 

   23214   mrmrrrr


, 

 1
1

1

3 













 





  kmrrmrs

k

i

ikk


,  (10) 

where the indices 1, 2, 3, 4 number the particles γ1, γ2,  

α, β, respectively, mmm 4,3,   and m1 = m2 = m. 

Let introduce the radius-vectors kx


 and ks


 that 

determine the position of k-th electron (γk) related with 

the β and α nuclei, respectively; their difference 

Rsx kk


  is the distance between the β and α nuclei. In 

these notations, the channel interactions   and   have 

the form 
 

21 s

Z

R

ZZ

s

Z 
  , 

21 x

Z

R

ZZ

x

Z 
  ,    (11) 

 

where Zα and Zβ are the charges of nuclei α and β, 

respectively. 

By definition, the Hamiltonian Hα
 
(Hβ) describes an 

asymptotic situation when the particle α(β) does not 

interact with anything, and the other three ones are in the 

bound state in the potential Vα
 
(Vβ). The eigenstates 

    of the Hamiltonian Hα
 
(Hβ) are the product 

of the wave function  21, xx 
   21, xx 


 of the bound 

state of the system (β; γ1, γ2) ((α; γ1, γ2)) and of a plane 

wave of the relative motion of particles in the initial 

(final) state: 
 

     rkixx


exp, 21 , 
 

     rkiss


exp, 21 ,       (12) 
 

where   kk


 is the momentum of the incident (scattered) 

particle in the system of the mass сenter before (after) 
collision. 

Let us now discuss the physical content of the 
operators included in the formula (8). From the formal 

point of view, the operator  
   can be considered as 

an operator that transforms the initial (final) asymptotic 

state of system     into a distorted wave 

 



   in the entrance (in the exit) reaction channel: 

 






  ,      (13) 

 






  .     (14) 

 

Finally,   wU  can be considered as an 

operator that causes the transition of the system from 

initial state (α) to the final one (β). 

We introduce the state vector 
 , defining it with 

the expression: 
 

   






  wg *1 .   (15) 

 

In notations (13)–(15), the transition amplitude (8) 

can be represented as follows: 
 








  UT .     (16) 

 

We obtain an explicit form of differential equations 

for the calculation of distortions in the initial and final 

channels of the reaction. Applying the operator 

   wHE  to both parts of the equality (13) and 

directing 
 0 , we obtain the following equation for 

the distorted wave in the entrance channel: 
 

    0 

 HEwHE ,  

 

  22kEE .    (17) 
 

Similar equations can be derived from (14) for the 

distorted wave in the exit channel: 
 

    0 

 HEwHE , 

  22kEE .     (18) 
 

Here, Eα and Eβ are the energies of the bound states 

of the compound particles (β; γ1, γ2) and (α; γ1, γ2); 

  Mmm 2  ,   Mmm 2   are the reduced 

masses of the corresponding groups of particles and 

2  mmM  is the total mass of the system. 

Further derivations are based on one “technical” 

requirement that will help to find an explicit solution to 

the task under our consideration. In fact, this will be a 

special choice of the function 
  based on simple 

physical considerations. We will require that the solution 

  of Eq. (18) should be represented in a factorized form 
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   

  rfss


21, ,    (19) 

where the function  rf


 describes the asymptotic motion 

of the bound system of three-particles (α; γ1, γ2) in the 

Coulomb field that is created by the fourth particle β. 

This requirement is in fact an additional 

assumption. The fact is that the representation for a 

multiparticle wave function 
  in the form (19) is 

applied if the relative velocity of heavy particles is higher 

than the orbital velocity of bound electron. However, if 

the collision velocity is small and the nucleus β interacts 

with the particles α, γ1, γ2 for a rather long time, then this 

factorization is hardly grounded. 

The differential equation (18) must be 

supplemented with the boundary condition, which in this 

case has the following form: 
 

 

    ,ln
'

2
exp

, 21















 













rkrk
ZZ

irki

ss
r





           

 

 kk


' .       (20) 
 

The fulfillment of the conditions that were made for 

the function 
  is easily achieved by the appropriate 

choice of the distortion potential wβ in Eq. (18). As wβ 
one can choose, for example, the potential 

    rZZw 2
)0(

, then the function  rf


 can be 

expressed explicitly through the degenerate 
hypergeometric function. However, we will not present 

the appropriate formulas, since the explicit form of  rf


 

is not essential here. 

Applying the operator  *
 HE  to both parts 

of the expression (15) and taking into account (18), we 

obtain (in the limit 
 0 ) the differential equation 

 

  



  **HE .    (21) 

 

Since the solution of the inhomogeneous equation 

(21) with realistic local potential is very difficult to deal 

with, it is logical to replace this potential with an 

operator, choosing it so that 
 

0*  
 ,      (22) 

 

and transform Eq. (21) to the form similar to (19), 
 

  



  21, ss


,                  (23) 

where the still unknown function 
  describes the 

distortion of the wave function  21, ss 


 of the bound 

state of the system (α; γ1, γ2) due to its interaction with 

the nucleus β in the output channel. 

Due to the condition (22) the equation (21) is 

reduced to homogeneous one 
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1
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





















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


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k kk ssR

ZZ

s

Z

x

Z
HE 

          (24) 

Using the above-defined two sets of relative 

variables, we write the operator H0 in two equivalent 

forms 
 

kk s

k k
rx

k k
rH 

 



 






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2
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1
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       (25) 

where 

   kmkmk   1 ,    kmkmk   1 . 

 

At first glance, it may seem that the problem of 

solving the equation (24) is generally trivial. In fact, it is 

not. Complications appear from the fact that the 

interaction potentials and the operator H0 presenting in 

this equation depend on the various combinations of 

relative variables used in the task (for example, the 

Jacobi coordinates 
r


, 
kx 


 or r


, 

ks


, on which the operator 

H0 depends, and the coordinates 
kx 


, 
ks


, R, on which the 

interaction potentials depend).To avoid these difficulties, 

let us consider an approximate method of separating the 

variables in the equation (24), which is based on the 

explicit approximation that the masses of particles γ1, γ2 

(electrons) are much smaller than the masses of the other 

two particles α and β (atomic nuclei), that is 

4,321 mmm  . In this case, in the expressions (9) and (10) 

one can neglect by the terms containing the mass ratio 

4,3mm  (k = 1, 2), as a result the Jacobi coordinates 
kx 


, 

r


, 
ks


, and r


 are close to the coordinates 
kx 


, R


, 
ks


, and 

R


 , respectively, that is 
 

kk xx


 , kk ss


 , Rr


 , Rr


 .  (26) 
 

Substituting the wave function 
  in the form (23) 

into the expression (24), we obtain, with account of (18) 

and (26), the equation for 
  

 

 

  .0
1

2,1

*

,

0






















k

ss kk

HEE


      (27) 

 

We need to solve this equation, accounting the 

additional conditions (22) mentioned above as well as 

boundary condition specifying the dynamics. As   in 

the last equation we choose the operator )0(
 , action of 

which on the arbitrary function  of r


 and ks 


 (k = 1, 2) 

is described by the relation: 
 

   





 

2,1

1)0(

k

ssk kk




.   (28) 
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Substituting the expression (28) )0(
  in (27) and 

accounting (26), we obtain the equation for 
  of the 

following form: 
 

.0
2

1

2

1

2,1





































 

 





 

k k
x

k
r

r

ZZ

x

Z
EE

k



       (29) 

In what follows, we search the solution of the 

equation (29), which at infinity has the form of a 

distorted plane wave with the unity amplitude 
 

 

    .ln
'

2
exp















  












rkrk
ZZ

irki

rf
rr





  (30) 

 

Solving the equation (29) with the method of 

variable separations, we find that 
 

    





 
2

1

)(

k

kk xrС


, constC ,  (31) 

 

where two-particle Coulomb distorting functions 

 kk x  )(
 and  

 r
)(  are described in the terms of 

degenerate hypergeometric functions with the relations 
 

       kkkkkkkk qiiFxqiNx  
 

,1,exp)()(
,  (32) 

 

       



  iqiFrqiNr ,1,exp)()( 

.  (33) 

 

Here,      2exp1)(  iN  are the nor-

malization coefficients; kkkk xqx 
̂

, 
 rqxk

̂
 

– two-particle parabolic variables; kq̂


 and q̂


 – unity 

vectors directed along the vectors kq


 and q


; 

kkk qZ   ,   qZZ  – characteristic 

Coulomb parameters. It follows from the law of energy 

conservation that variables kq


 and q


 must satisfy the 

equation 


 

















2,1

222

222
k

k

k

qqk
EE .   (34) 

Further, considering the asymptotic form of the 

function F(a, b, x) at x → ∞, from the asymptotic 

conditions of function matching (31) with the eikonal 

asymptotics (30) we find that 
 




 

2,1k

kk rkrqxq


,    (35) 

 

   

    )36(.ln
2

exp

lnlnexp

2,1














 



























rkrk
ZZ

i

qiqiC
r

k

kkk



 

We express r


 through the coordinates r


, 1x


 and 

2x 


 by using the formula 

k

k

k x
b

rar 


 
 





2,1

2 , 

 

 kmmak   ,  
 

 kmmbk   .     (37) 

 

We now substitute (37) into the right-hand side of 

the equality (35) and equate the terms at r


, 1x


 and 2x 


 

in both its parts. We obtain 
 

 





mkkk bbkq  )2,1( k , 

  


kkaq
m


2 .         (38) 

 

Accounting the asymptotic limits 

 


 



 





















iZ

r
kk xx

rkrkZ
i lnln 



  

k = 1, 2       (39) 

from the condition (36), we find that 



 

iZ
C

2
.  

It follows from the formulas (31) to (33) and (38) that the 

distortion function 
  in the output channel can be 

represented as 
 

      

   












 

2

1

2)()(2

,,1,,1,

exp

k

kk

i

xixiiFrkirikiF

rkiNN





(40) 

where   Z ,  ZZ . 

Therefore, the wave function of the finite state 
  

(defined by the formulas (23), (40)) has been derived, 

which in the present task describes the scattering of the 

charged particle β by the bound compound of three 

particles α, γ1, γ2. The important thing is that the effects 

of pair Coulomb interactions in it manifested themselves 

in a multiplicative way. Further, we describe the wave 

function of the initial state. This function can be obtained 

by solving the differential equation (17). We complete 

the above equation with the boundary condition on 

infinity 

 

    ,ln
2

exp

, 21















 













rkrk
ZZ

irki

xx
r





 

  k


.       (41) 

 

We substitute the function in the form of a product 
 

  



  21, xx


    (42) 

 

into the equation (17) and, by making simple 

transformations, we obtain the equation for 
 : 
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 

    .0
2,1

1

0


















 U

HEE

kk x

k

xk


      (43) 

 

In further calculations, we will need a specific kind 

of the operator   wU . Only the most general 

considerations can be given when choosing Uα. First, it is 

clear that this operator must be such that the equation 

(43) has solutions in the class of special or elementary 

functions. It is necessary to watch that the wave function 

of the initial state 
  has the correct asymptotic behavior 

(41) over long distances. 

Second, the operator Uα must be selected so that the 

distortions in the entrance (
 ) and in the exit (

 ) 

channels of the reaction (2) were treated equally. The fact 

is that asymmetric choice of   and Uα in the equations 

(27) and (43) leads to asymmetric definition of 

distortions in the initial and final states, which 

contradicts the basic idea of the CDW method [14]. In 

addition, if some a priori information is known about the 

scattering wave functions 
  and 

 , then it can be also 

taken into account when choosing   and Uα in the 

equations (27) and (43), respectively. 

Based on these considerations, we choose as Uα the 

operator
)0(

U , action of which on the arbitrary function  

on rα , β, 1x  and 2x  is described by the relation 
 

   .
2,1

1)0( 





 
k

xxk kk
U 


  (44) 

 

After substituting (44) into (43), we obtain the 

equation for 
 , which can be conveniently written in 

the form: 
 





































 

 





 

0
2

1

2

1

2,1k k
s

k
r

r

ZZ

s

Z
EE

k

 .

       (45) 
 

The solution of this equation is determined by 

comparing its asymptotics with the corresponding 

eikonal approximation. However, we will not further 

formalize these considerations. The technique required 

for this has been described in rather detail above when 

constructing a solution 
  of the similar equation (29). 

Lowering the rather cumbersome intermediate 

calculations, we write immediately the final result (at the 

limit 214,3 mmm  ): 
 

   

   












 

2

1

2*)(*)(2

,,1,,1,

,exp)()(

k

kk

i

sisiiFrkirikiF

rkiNN





   (46) 

where   ,, Z ,  ZZ . 

Next, we need to substitute the expressions (23), 

(40), (42), (44), and (46) into the expression (16), after 

which the amplitude of reaction 
T  can be written as 

the sum of two terms. This amplitude describes the 

simultaneous capture of two electrons by fast ions in 

collisions of with atoms: 
 

  
     















 21

*

21

2*)(*)(

,,exp

)(

ssrrrkirkirdxdxd

NNT



   

     .,1,,1,

,,1,

2211

2,1

21

2

1

sisiiFsisiiF

xxxixiiF
kk s

k

x

j

jj















 





 

 

In the equation (47), the notation is used 
 

 
    .,1,,1,

)()(, *)(*)(22













 

rkirikiFrkirikiF

NNrr
ii





      (48) 

 

The obtained complex expression (47) is easily 

simplified. First of all, we note that in the case of rapid 

collisions (at 
  EEk 22 ), the incident particles 

are scattered mainly forward, i.e., at rather small angles 

  kk ˆˆ 
. It is this region of scattering angles that makes a 

dominant contribution to the full cross-section of the 

reaction (2), since at large scattering angles the transition 

amplitude becomes small due to fast oscillations of the 

exponential factor    rkirki


exp  under the integral in 

(47). Physically this means that at small scattering 

angles, the trajectories can be considered almost straight 

and the nuclei move with a constant velocity vector. In 

this case, the vector R


 can be represented as an 

orthogonal sum zR


 , 0 z


. Given that 


'  

and 4321 mmmmm   for the exponent in (47) it is 

easy to obtain the following relation: 
 

   2121 ssqxxprkrk


  ,   (49) 
 

where 















 ˆ2
 EE

p , 















 ˆ2
 EE

q ;         






̂

,                (50) 




 is orthogonal relatively to the vector 


 of the 

component of the vector of the transmitted momentum 

 0 zz


. 

For the function   rr


,  in this approximation, 

we get: 
 

     




 



ii

m
rr

22
,lim

,


, 

   mmmm .     (51) 
 

  (47) 
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Then, with the accuracy of the insignificant phase 

factor, expression for the scattering amplitude (i.e., 

charge-exchange (2)) at small angles has the form 
 

     








 

2,1

)(2*)(*)(

k

kINNT ,  (52) 

 

where the matrix elements are marked through )(kI  

 

      

   













2

1

21

21
*

2121121
)(

,,1,

,exp

j

xjj

k

xxxixiiF

ssssqixxpisdxdxdI

k







 

    2211 ,1,,1, sisiiFsisiiF
ks


   .  (53) 

 

We assume that the active electrons of system 

(λ; γ1, γ2), λ = α, β move in the field of the atom residue 

and their motion is described by the Hamiltonian with 

separation of variables. Then the wave function 

 21,xx


   21, ss


  of the initial (final) state can be 

represented as the product of the same (since, in the case 

of collision of a helium atom with α-particle, the initial 

and final states are S
2
-states) one-electron functions 

 

     2121, xxxx


  ,  

     2121, ssss


  ,    (54) 

 

where  kx


  and  ks


  are hydrogen-like wave 

functions in the field of nuclei with effective charges 

3125.0 Z  and 3125.0 Z : 
 

     kk xx  exp
2/13

,  

     kk ss  exp
2/13

. 

 

We now begin to calculate the matrix element (53). 

Let us show how it can be done in the example of one of 

the terms in (52) by writing it in the momentum 

representation 

        


 


pRqRpRqRdI )2()2()1()1(3)1( )2( . 

       (55) 
 

Here, we introduced the notations 
 

          jjsjjj
j sisiiFsskisdkR

j


 ,1,exp *)( ,  

      (56) 

          jjjjj
j xixiiFxxkixdkR


,1,exp)(

 

  jx x
j




 ,      (57) 

 

          jjjjj
j

sisiiFsskisdkR


,1,exp *)( ,  (58) 

 

       .,1,exp)(

   jjjjj

j xixiiFxxkixdkR


  (59) 

 

The expression under the integral (55) is localized 

in the following four regions of momentum 


 subspace: 
 

аp 1


,        аq 1| 


,  

аp 1


,        аq 1


,      (60) 
 

where a is the characteristic radius of potentials of pair 

interaction. Since  


)1(

R  and  


)1(R  decrease faster than 

 


)2(R  and  


)2(R , it is easy to understand that the 

contribution into the value of the integral (55) from the 

third and fourth areas in (60) is insignificant and its value 

is completely determined by the contribution of only the 

first and second areas in (60). Here, in the expression 

(55), the function     )()1()1(   RpRqR


 can be 

taken outside the integral sign, which changes slowly in 

the areas of sharp growth of the rest of the integrand. 

Then applying the convolution theorem and performing 

the x


 integration according to the Nordsieck integral 

technique [16], we obtain 

        

  )61(,,,,,,

22
2

21

)1()1()1()1()1(





















qp

qpRqRpRpqR
NN

I

 

where 
 

     
 xkixxxdk


exp,,,,, 1

2121  

 

   xixiiFxixiiF


222111 ,1,,1,  = 
 

      
      ,,1,,21

214

21
22

22

22
11

122

2

1

WiiFkik

kikk

i

i













 

 

     

     22
22

11
22

2121
22

2211

22

24






ikkikk

kikik
W 



, 

2/1
3


















N ,   , .      (62) 

Interpretation of the expressions (61), (62) is as 

follows. The matrix element  )1()1(
 RR


 describes the 

two-step (Thomas’) mechanism of electron capture (γ1) 
through the continuum from a target atom (β; γ1, γ2) to 
the states bound with the projectile (α). The factor 

 , which corresponds to the integration in 
)1(

I  

over the coordinates of second electron (γ2) is reduced to 
the overlap integral. 

Similar in structure, the relations are obtained for 

the matrix element 
)2(

I . It can be seen that for the 

resonance two-electron capture, both matrix elements in 
(52) transform one into another when electrons transpose. 

Therefore, their contribution to the amplitude 
T  is the 

same. 
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4. Results of calculations 

Let’s consider the application of the above formalism on 

the example for the calculation of cross-sections of two-

electron charge-exchange in the collision of helium atom 

with α-particles: 
 

He
2+

 + He (1S
2
) → He (1S

2
) + He

2+
.   (63) 

 

This process is important in connection with the 

problems of heating of deuterium-tritium plasma by α-

particles [17]. One way to diagnose α-component of 

plasma is based on double charge-exchange (63) Mega-

electron-Volts beams of helium atoms He(1S
2
) on fast  

α-particles. 

The process (63) was studied previously both 

theoretically [18, 19] and experimentally [20]. The most 

theoretical works [18, 19] use a model of independent 

events, in which charge exchange is interpreted as an 

event consisting of two independent events: one-electron 

– capture of one electron and “non-capture” of another 

one, two-electron – independent capture of both 

electrons. Because the probability of capturing an 

electron as a one-step process is determined by equality 
 

   
2

)1(  


AP ,       (64) 

 

where  

)1(A  is the amplitude of transition in the quasi-

classical approximation, then the probability of a one-

electron charge-exchange is equal to P
2
. 

The correctness of using the model of independent 

events was discussed in [19], where for the reaction (63) 

at the collision energies 0.2 – 0.4 MeV/a.m.u. the cross-

sections of two-electron capture were calculated. Double 

capture (63) is a two-electron process in which electronic 

correlations play a large role, so the limits of the model 

of independent electrons leads to differences between the 

calculated and experimentally measured cross-sections. 

Correlation effects affect both the value of cross-sections 

and the nature of their dependence on the collision 

energy [19]. 

In this relation, the correlated version of the 

Pluvinage correlated continuum distorted wave (PCCDW) 

approximation developed by Crothers and McCarroll [18] 

deserves some attention. In this approximation, electron 

capture is still an independent event, but electrons 

themselves are considered highly interacting in the 

entrance channel. The amplitude of single-electron capture 

in the formula (64) is determined in the standard CDW 

approximation [14], and the single-parameter correlated 

two-electron Pluvinage function is taken as the 

undisturbed wave function of the initial state [21]. 

In their model, Crothers and McCarroll believe that 

during a collision, electron is captured from the part of 

the target shell that is returned to the projectile.  

The second electron is inert and is located on the  

other side of the target due to the Pluvinage correlations.  

 
Thus, the perturbation by the projectile potential before 
collision and the perturbation by the target potential after 
collision are sensed only by the captured electron. The 
undisturbed wave function of the finite state is 
represented as the product of two hydrogen orbitals. 

The results of our calculations of cross-sections of 

resonance charge exchange (63) performed in the 

formalism of distorted waves with the amplitude (52) are 

presented in Fig. 1 (solid line) together with the results of 

the following authors’ calculations: [22] – dashed, [23] – 

dashed-dotted, [24] – short-dashed, [18] – short-dotted 

lines.  

Fig. 2 shows the original results from the works: 

[20] – star, [22] – triangle, [25] – rhombus, which 

contain experimental data on cross-sections of double 

capture (63) at high energies. 

 

 

 
 

Fig. 1. The results of the calculations of the cross-sections of 

two-electron charge exchange during the collision of helium 

atom with α-particles. Comparison with theoretical calculations. 

 
 

 
 

Fig. 2. Cross-section of two-electron charge exchange during 

collision of helium atom with α-particles. Comparison with 

experimental data. 
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The figures clearly show typical features of the cal-

culation based on the use of the four-body Dodd–Greider 

integral equations in the calculation of amplitude, 

namely: a slight decrease in the calculated cross-sections 

in the area of average energies when comparing with the 

theoretical calculations of other authors and relatively 

good agreement with the experimental data at high 

energies. At the same time, as we see, the results of 

calculations in [22, 23] are overvalued not only with 

respect to our calculations and those of other authors [18, 

24], but also with respect to the experiment [20]. This 

may be related with the fact that when the velocity of 

collision decreases, the approach of independent 

electrons becomes incorrect. 

Fig. 1 also presents the results of the most accurate 

variants of the calculations performed by Crothers and 

McCarroll in the PCCDW approximation [18]. The data 

were obtained taking into account Coulomb distortions of 

electron wave functions in both reaction channels (63). 

We see that at E = 500 keV, the calculations [18, 24] are 

in good agreement with the experimental data. However, 

in the high energy area (E ≥ 1000 keV), the calculations 

made in [18, 24] lead to decreasing the cross-sections, 

and the proposed in this work method of accounting the 

Coulomb effects in the four-body model is better agreed 

with the experimental data. 

5. Conclusions 

On the basis of the Dodd–Greider integral equations for  

a quantum mechanical operator of a four-particle 

rearrangement scattering, the formalism of the continuum 

distorted wave method that is successfully used to 

describe two-electron capture processes in high-energy 

ion-atomic collisions has developed. The advantage of 

the proposed formalism over the others is a consistent 

preservation of the proper asymptotic limits of the wave 

functions of a colliding system in both channels of 

reaction, which takes into account the long-range nature 

of Coulomb interactions. The calculations of cross-

sections of double charge-exchange at the collision of 

He
2+

 with Hе were performed, which showed that the 

proposed method describes well the experimental data 

and the available theoretical calculations of other authors. 

We have made the calculations on the assumption 

that the mechanism of the simultaneous capture of two 

electrons makes the major contribution to the amplitude 

of reaction (63) in the considered energy area. On the 

other hand, the charge-exchange processes in two-

electron systems can be considered as two-step processes 

of sequential capture of two electrons. Certainly, the 

simultaneous accounting the mechanisms mentioned 

above is a rather difficult task and requires further 

experimental and theoretical efforts. Further development 

of the method is seen in the accounting the additional 

mechanisms of two-electron capture, as well as in the 

inclusion of electronic correlations into the wave 

functions of the initial and final states. Obviously, these 

effects will be significant in the field of lower energies of 

the incident particles. 

References 

1. Lazur V.Yu., Khoma M.V. Distorted wave theories 

for one- and two-electron capture in fast atomic 

collisions. Advances in Quantum Chemistry. 2013. 

65. P. 363–405. http://dx.doi.org/10.1016/b978-0-

12-396455-7.00013-3. 

2. Lazur V.Yu., Aleksiy V.V., Karbovanets M.I., 

Khoma M.V., Myhalyna S.I. Taking the Сoulomb 

effects into account in the reactions of one-electron 

charge exchange. Semiconductor Physics, Quantum 

Electronics & Optoelectronics. 2019. 22. P. 171–

181. https://doi.org/10.15407/spqeo22.02.171. 

3. Belkić Dž. Quantum Theory of High-energy Ion-

atom Collisions. Taylor & Francis, London, 2008. 

4. Lazur V.Yu., Khoma M.V., Janev R.K. Asymptotic 

properties of the three-Coulomb-center problem 

eZ1ZZ. Phys. Rev. A. 2006. 73. P. 032723. 

https://doi.org/10.1103/PhysRevA.73.032723. 

5. Khoma M.V., Lazur V.Yu., Janev R.K. Asymptotic 

theory of the one- and two-electron processes in 

slow collisions of atomic ions with diatomic 

molecules. Phys. Rev. A. 2009. 80. P. 032706. 

https://doi.org/10.1103/PhysRevA.80.032706. 

6. Belkić Dž. Total cross sections in five methods for 

two-electron capture by alpha particles from 

helium: CDW-4B, BDW-4B, BCIS-4B, CDW-EIS-

4B and CB1-4B. JOMC. 2020. 58. P. 1133–1176. 

https://doi.org/10.1007/s10910-020-01123-4. 

7. Belkić Dž. Fast Ion-Atom and Ion-Molecule 

Collisions. World Scientific Publishing Co., 

Singapore, 2012. https://doi.org/10.1142/8485. 

8. Fischetti M.V., Vandenberghe W.G. Advanced 

Physics of Electron Transport in Semiconductors 

and Nanostructures. Springer International 

Publishing, Switzerland, 2016. 

9. Chao A., Chou W. Reviews of Accelerator Science 

and Technology – Vol. 10: The Future of 

Accelerators. World Scientific Publishing Co., 

Singapore, 2019. 

10. Grozdanov T.P., Janev R.K., Lazur V.Yu. 

Asymptotic theory of the strongly asymmetric two-

Coulomb-center problem. Phys. Rev. A. 1985. 32, 

No 6. P. 3425–3434. 

https://doi.org/10.1103/PhysRevA.32.3425. 

11. Gorvat P.P., Lazur V.Yu. Asymptotic behavior of 

charge-exchange amplitude at relativistic velocities 

and binding energies. Theor. and Math. Phys. 1993. 

95, No 3. P. 708–724. 

https://doi.org/10.1007/BF01017517. 

12. Gorvat P.P., Lazur V.Yu., Presnyakov L.P., Uskov 

D.B. Asymptotic behavior of charge-exchange 

amplitude. Theor. and Math. Phys. 1992. 91, No 1. 

P. 373–384.  https://doi.org/10.1007/BF01019830. 

13. Lazur V.Yu., Mashika Yu.Yu., Janev R.K., 

Grozdanov T.P. Quasi-crossing of Rydberg terms in 

the problem of two Coulomb centers with strongly 

differing charges. Theor. and Math. Phys. 1991. 87, 

No 1. P. 401–410. 

https://doi.org/10.1007/BF01016580. 

10.1007/BF01017517
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2FBF01019830
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2FBF01019830


SPQEO, 2020. V. 23, No 2. P. 119-128. 

Lazur V.Yu., Aleksiy V.V., Myhalyna S.І., Hnatič M. Four-particle formalism of the CDW method…  

128 

14. Belkić Dž., Gayet R., Salin A. Electron capture in 

high-energy ion-atom collisions. Phys. Repts. 1979. 

56, No 6. P. 279–369. https://doi.org/10.1016/0370-

1573(79)90035-8. 

15. Dodd L.R., Greider K.R. Rigorous solution of three-

body scattering processes in the distorted-wave 

formalism. Phys. Rev. A. 1966. 146. P. 675–686. 

https://doi.org/10.1103/PhysRev.146.675. 

16. Nordsieck A. Reduction of an integral in the theory 

of Bremsstranhlung. Phys. Rev. 1954. 93. P. 785–

787. https://doi.org/10.1103/PhysRev.93.785. 

17. Barnett C.F., Harrison M.F.A. Plasmas: Applied 

Atomic Collision Physics. Academic Press, London, 

1984. 

18. Crothers D.S.F., McCarroll R. Correlated 

continuum distorted-wave resonant double electron 

capture in He
2+

-He collision. J. Phys. B. 1987. 20, 

No 12. P. 2835–2842. https://doi.org/10.1088/0022-

3700/20/12/027. 

19. Gayet R., Rivarola R.D., Salin A. Double electron 

capture by fast nuclei. J. Phys. B. 1981. 14, No 9.  

P. 2421–2427. https://doi.org/10.1088/0022-

3700/20/12/027. 

20. De Castro Faria N.V., Freire F.L. Jr., de Pinho A.G. 

Electron loss and capture by fast helium ions in 

noble gases. Phys. Rev. A. 1988. 37, No 1. P. 280–

283. https://doi.org/10.1103/PhysRevA.37.280. 

21. Pluvinage Ph. Fonction d’onde approchée à un 

paramètre pour l’état fondamental des atomes à 

deux électrons. Ann. Phys. (Paris). 1950. 12, No 5. 

P. 145–152. 
https://doi.org/10.1051/anphys/195012050145. 

22. Ghosh S., Dhara A., Mandal C.R., Purkait M. 

Double-electron-capture cross sections from helium 

by fully stripped projectile ions in intermediate-to-

high energies. Phys. Rev. A. 2008. 78. P. 042708. 

https://doi.org/10.1103/PhysRevA.78.042708. 

23. Purkait M., Sounda S., Dhara A., Mandal C.R. 

Double-charge-transfer cross sections in inelastic 

collisions of bare ions with helium atoms. Phys. 

Rev. A. 2006. 74. P. 042723. 

https://doi.org/10.1103/PhysRevA.74.042723. 

24. Gravielle M.S., Miraglia J.E. Double-electron 

capture as a two-step process. Phys. Rev. A. 1992. 

45, No 5. P. 2965–2973. 

https://doi.org/10.1103/PhysRevA.45.2965. 

25. DuBois R.D. Double-electron capture as a two-step 

process. Phys. Rev. A. 1987. 36, No 6. P. 2585–

2593. https://doi.org/10.1103/PhysRevA.36.2585. 

 

 

 

 

 

 

 

 

 

Authors and CV 

 

Volodymyr Yu. Lazur. Merited 

Figure of Science and Technology 

of Ukraine, Doctor of Physical and 

Mathematical Sciences, Leading 

Researcher, Professor of the De-

partment of Theoretical Physics at 

the Uzhhorod National University, 

Ukraine. He is the author of more 

than    300   scientific   publications. 
His main research interests of theoretical physics, 

theory of ion-atom and ion-molecular collisions.   

volodymyr.lazur@uzhnu.edu.ua 
 

 

Vitaliy V. Aleksiy. Head of 

Laboratories of the Department of 

Theoretical Physics at the 

Uzhhorod National University, 

Ukraine. He is the author of about 

20 scientific publications. The 

central research focus on 

theoretical physics, theory of ion-

atom and ion-molecular collisions.  
vitaliy.aleksiy@uzhnu.edu.ua 

  

 

Michal Hnatič. Doctor Honoris 

Causa, Doctor of Sciences, 

Leading Scientist at the Institute of 

Expe-rimental Physics, Slovak 

Academy of Sciences, Professor of 

Depart-ment of Nuclear and 

Subnuclear Physics at P.J. Safarik 

University in Kosice, Slovak 

Republic. He is the author of more  
than  180  scientific publications. The central researches 

have been focused on theoretical physics especially on 

quantum-field theory methods and their application in 

non-linear dynamics.  

hnatic@saske.sk 

 

 

Svitlana I. Myhalyna. Senior 

Lecturer of the Department of 

Computer Systems and Networks 

at the Uzhhorod National 

University, Ukraine. She is the 

author of about 30 scientific 

publications. Her research areas are 

the theoretical physics and theory 

of ion-atom collisions. 

kaf-networks@uzhnu.edu.ua 

 

 

 

 

 

https://doi.org/10.1103/PhysRevA.36.2585

