Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (2) P. 115-123 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.115


References

1. Chen F., Zhou W.J., Yao H.F. et al. Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications. Green Chem. 2013. 15, No 11. P. 3057-3063. https://doi.org/10.1039/c3gc41080c

2. Simon P., Gogotsi Y. Capacitive energy storage in nanostructured carbon-electrolyte systems. Accounts Chem. Res. 2013. 46, No 5. P. 1094-1103. https://doi.org/10.1021/ar200306b

3. Wei J.S., Ding C., Zhang P. et al. Robust negative electrode materials derived from carbon dots and porous hydrogels for high-performance hybrid supercapacitors. Adv Mater. 2019. 31. P. 5. https://doi.org/10.1002/adma.201806197

4. Wang Y.G., Xia Y.Y. Recent progress in supercapacitors: From materials design to system construction. Adv Mater. 2013. 25, No 37. P. 5336-5342. https://doi.org/10.1002/adma.201301932

5. Qian W., Chen Z.Q., Cottingham S. et al. Surfactant-free hybridization of transition metal oxide nanoparticles with conductive graphene for high-performance supercapacitor. Green Chem. 2012. 14, No 2. P. 371-377. https://doi.org/10.1039/C1GC16134B

6. Hu X., Nango K., Bao L. et al. High yields of solid carbonaceous materials from biomass. Green Chem. 2019. 21, No 5. P. 1128-1140. https://doi.org/10.1039/C8GC03153C

7. Simon P., Gogotsi Y., Dunn B. Where Do Batteries End and Supercapacitors Begin? Science. 2014. 343 (6176). P. 1210-1211. https://doi.org/10.1126/science.1249625

8. Beguin F., Presser V., Balducci A., Frackowiak E. Carbons and electrolytes for advanced super-capacitors. Adv. Mater. 2014. 26, No 14. P. 2219-2251. https://doi.org/10.1002/adma.201304137

9. Zhai Y.P., Dou Y.Q., Zhao D.Y. et al. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011. 23, No 42. P. 4828-4850. https://doi.org/10.1002/adma.201100984

10. Zhang J.T., Jiang J.W., Li H.L., Zhao X.S. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ. Sci. 2011. 4, No 10. P. 4009-4015. https://doi.org/10.1039/c1ee01354h

11. Zhu Y.W., Murali S., Stoller M.D. et al. Carbon-based supercapacitors produced by activation of graphene. Science. 2011. 6037. P. 1537-1541. https://doi.org/10.1126/science.1200770

12. Pech D., Brunet M., Durou H. et al. Ultrahigh-power micrometer-sized supercapacitors based on onion-like carbon. Nature Nanotech. 2010. 5, No 9. P. 651-654. https://doi.org/10.1038/nnano.2010.162

13. Yao B., Yuan L.Y., Xiao X. et al. Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy. 2013. 2, No 6. P. 1071-1078. https://doi.org/10.1016/j.nanoen.2013.09.002

14. Yu Z.Y., Chen L.F., Song L.T. et al. Free-standing boron and oxygen co-doped carbon nanofiber films for large volumetric capacitance and high rate capa-bility supercapacitors. Nano Energy. 2015. 15. P. 235- 243. https://doi.org/10.1016/j.nanoen.2015.04.017

15. Qie L., Chen W.M., Xu H.H. et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 2013. 6, No 8. P. 2497-2504. https://doi.org/10.1039/c3ee41638k

16. Li Y.J., Wang G.L., Wei T., Fan Z.J., Yan P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy. 2016. 19. P. 165-175. https://doi.org/10.1016/j.nanoen.2015.10.038

17. Wang Y.M., Lin X.J., Liu T. et al. Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors. Adv. Funct. Mater. 2018. 28. P. 52. https://doi.org/10.1002/adfm.201806207

18. Wu C., Yang S.R., Cai J.J., Zhang Q.B., Zhu Y., Zhang K.L. Activated microporous carbon derived from almond shells for high energy density asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 2016. 8, No 24. P. 15288-15296. https://doi.org/10.1021/acsami.6b02942

19. Gao S. Y., Geng K.R., Liu H.Y. et al. Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energy Environ. Sci. 2015. 8, No 1. P. 221-229. https://doi.org/10.1039/C4EE02087A

20. Wang M.Q., Zhou J., Wu S.J., Wang H., Yang W. Green synthesis of capacitive carbon derived from Platanus catkins with high energy density. J. Mater. Sci.: Mater. Electron. 2019. 30, No 4. P. 4184-4195. https://doi.org/10.1007/s10854-019-00710-9

21. Qiang L.L., Hu Z.A., Li Z.M. et al. Hierarchical porous biomass carbon derived from cypress coats for high energy supercapacitors. J. Mater. Sci.: Mater. Electron. 2019. 30, No 8. P. 7324-7336. https://doi.org/10.1007/s10854-019-01045-1

22. Chen C.T., Wang S., Peng Z.G., Ao G.H. Hierarchical porous architecture on Ni foam created via an oxidization-reduction process and its application for supercapacitor. J. Mater. Sci.: Mater. Electron. 2019. 30, No 12. P. 11231-11238. https://doi.org/10.1007/s10854-019-01468-w

23. Xing P., Ma B.Z., Wang C.Y., Wang L., Chen Y.Q. A simple and effective process for recycling zinc-rich paint residue. Waste Management. 2018. 76. P. 234-241. https://doi.org/10.1016/j.wasman.2018.03.018

24. Min J.K., Zhang S., Li J.X. et al. From polystyrene waste to porous carbon flake and potential application in supercapacitor. Waste Management. 2019. 85. P. 333-340. https://doi.org/10.1016/j.wasman.2019.01.002

25. Mingo N., Broido D.A. Carbon nanotube ballistic thermal conductance and its limits. Phys. Rev. Lett. 2005. 95. P. 096105. https://doi.org/10.1103/PhysRevLett.95.096105

26. Novoselov K.S., Geim A.K., Morozov S.V. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005. 438. P. 197-200. https://doi.org/10.1038/nature04233

27. Berger C., Song Z., Li T. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B. 2004. 108. P. 19912. https://doi.org/10.1021/jp040650f

28. Wessells C., Ruffo R., Huggins R.A. & Cui Y. Investigation of the electrochemical stability of aqueous electrolyte for lithium battery applications. Electrochem. Solid-State Lett. 2010. 13, No 5. P. A59. https://doi.org/10.1149/1.3329652

29. de Souza R.A., Arashiro E., Golveia H., Lassali T.A.F. Pseudocapacitive behavior of Ti/RhOx + Co3O4 electrodes in acidic medium: Application to supercapacitor development. Electrochim. Acta. 2004. 49. P. 2015-2023. https://doi.org/10.1016/j.electacta.2003.12.031

30. Qu D and Shi H. Studies of activated carbons used in double-layer capacitors. J. Power Sources. 1998. 74. P. 99-107. https://doi.org/10.1016/S0378-7753(98)00038-X

31. Chu F.-H., Huang C.-W., Hsin C.-L. et al. Well-aligned ZnO nanowires with excellent field emission and photocatalytic properties. Nanoscale. 2012. 4, No 5. P. 1471-1475. https://doi.org/10.1039/C1NR10796H

32. Vivekchand S.R.C., Rout C.S., Subrahmanyam K.S. et al. Graphene-based electrochemical super-capacitors. J. Chem. Sci. 2008. 120. P. 9-13. https://doi.org/10.1007/s12039-008-0002-7

33. Liu Q., Liu Z.F., Zhang X.Y. et al. Organic photovoltaic cells based on an acceptor of soluble grapheme. Appl. Phys. Lett. 2008. 92. P. 223303. https://doi.org/10.1063/1.2938865

34. Lu T., Zhang Y.P., Li H.B., Pan L.K., Li Y.L., Sun Z. Electrochemical behaviors of graphene-ZnO, and graphene-SnO2 composite films for supercapacitors. Electrochim. Acta. 2010. 55. P. 4170-4173. https://doi.org/10.1016/j.electacta.2010.02.095

35. Li B., Cao H. ZnO-graphene composite with enhanced performance for the removal of dye from water. J. Mater. Chem. 2011. 21. P. 3346-3349. https://doi.org/10.1039/C0JM03253K

36. Wu J., Shen X., Jiang L., Wang K., Chen K. Solvothermal synthesis and characterization of sandwich-like GO/ZnO composites. Appl. Surf. Sci. 2010. 256. P. 2826-2830. https://doi.org/10.1016/j.apsusc.2009.11.034

37. Baby T.T., Ramaprabhu S. Investigation of thermal and electrical conductivity of graphene-based nanofluids. J. Appl. Phys. 2010. 108. P. 124308. https://doi.org/10.1063/1.3516289

38. Momeni M.M., Ghayeb Y. & Menati M. Fabri-cation, characterization and photoelectrochemical properties of cuprous oxide-reduced graphene oxide photocatalysts for hydrogen generation. J. Mater. Sci.: Mater. Electron. 2018. 29. P. 4136-4146. https://doi.org/10.1007/s10854-017-8358-4

39. Haldorai Y., Voit W., Shim J.J. Nano ZnO-reduced graphene oxide composite for high performance supercapacitor: Green synthesis in supercritical fluid. Electrochim. Acta. 2014. 120. P. 65. https://doi.org/10.1016/j.electacta.2013.12.063

40. Wang J., Gao Z., Li Z. et al. Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties. J. Solid State Chem. 2011. 184. P. 1421. https://doi.org/10.1016/j.jssc.2011.03.006

41. Ye X., Zhu Y., Tang Z., Wan Z. and Jia C. In-situ chemical reduction produced graphene paper for flexible supercapacitors with impressive capacitive performance. J. Power Sources. 2017. 360. P. 48. https://doi.org/10.1016/j.jpowsour.2017.05.103

42. Pratheepa M.I., Lawrence M. Synthesis of pure, Cu and Zn doped CdO nanoparticles by co-precipitation method for supercapacitor applications. Vacuum. 2019. 162. P. 208. https://doi.org/10.1016/j.vacuum.2019.01.042

43. Pratheepa M.I. & Lawrence M. Eco-friendly approach in supercapacitor application: CuZnCdO nanosphere decorated in reduced graphene oxide nanosheets. SN Appl. Sci. 2020. 2. P. 318. https://doi.org/10.1007/s42452-020-2123-7