Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (2) P. 124-130 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.124


References

1. Oranska O.I., Danylenko M.I., Bogatyrev V.M., Gornikov Y.I. Structure of modifying component in nanocomposites based on fumed silica and Mg, Mn, Ni, Zn oxides. Khimiya, Fizyka ta Tekhnologiya Po-verhni. 2011. 2, No 3. P. 258-261 (in Russian).

2. Bogatyrev V.M., Borysenko L.I., Oranska O.I., Galaburda M.V. ÌXOY/SiO2 nanocomposites based on fumed silica and acetates of Ni, Mn, Cu, Zn, Mg. Poverhnya. 2009. 15. P. 294-302 (in Russian).

3. Bogatyrev V.M., Oranska O.I., Gun'ko V.M. et al. Influence of metal content on structural characteristics of inorganic nanocomposities MxOy/SiO2 and C/MxOy/SiO2. Khimiya, Fizyka ta Tekhnologiya Poverhni. 2011. 2, No 2. P. 135-146 (in Russian).

4. Gun'ko V.M., Turov V.V., Leboda R. Structure-adsorption characteristics of carbon-oxide materials. Theor. Exp. Chem. 2002. 38, No 4. P. 199-228. https://doi.org/10.1023/A:1020586713911

5. Gun'ko V.M., Skubiszewska-Zieba J., Leboda R. et al. Pyrocarbons prepared by carbonisation of polymers adsorbed or synthesised on a surface of silica and mixed oxides. Appl. Surf. Sci. 2004. 227, Nos 1-4. P. 219-243. https://doi.org/10.1016/j.apsusc.2003.11.077

6. Leboda R., Skubiszewska-Zieba J., Rynkowski J. Preparation and porous structure of carbon-silica adsorbents obtained on the basis of Ti, Co, Ni, Cr, Zn and Zr acetylacetonates and acetylacetone. Col-loids & Surfaces A. 2000. 174, No 3. P. 319-328. https://doi.org/10.1016/S0927-7757(00)00585-9

7. Turov V.V. and Leboda R. Changes in hydration properties of silica gel in a process of its carbonization by pyrolysis of acetylacetone Zn (Ti) acetylacetonates. J. Colloid Interface Sci. 1998. 206, No 1. P. 58-65. https://doi.org/10.1006/jcis.1998.5659

8. Vasin A., Kysil D., Rudko G., Isaieva O. Visible photoluminescence of aged Zn(acac)2/C2H5OH solution: emission/excitation/kinetics study. Proc. Intern. Research and Practice Conference "Nano-technology and Nanomaterials" (NANO-2017), 23-26 August 2017, Chernivtsi, Ukraine, p. 338. http://ekmair.ukma.edu.ua/handle/123456789/13067

9. Vasin A.V., Kysil D.V., Isaieva O.F. et al. Evolution of UV/VIS photoluminescence of aged Zn(acac)2 solutions in correlation with carbon precipitation. ECS Trans. 2021. 102, No. 1. P. 55-64. https://doi.org/10.1149/10201.0055ecst

10. Stoll S. and Schweiger A. EasySpin, a compre-hensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006. 178, No 1. P. 42-55. https://doi.org/10.1016/j.jmr.2005.08.013

11. Barklie R.C. Characterization of defects in amorphous carbon by electron paramagnetic resonance. Diam. Relat. Mater. 2003. 12, No 8. P. 1427-1434. https://doi.org/10.1016/S0925-9635(03)00004-9

12. Haenen K., Meykens K., Nesladek M. et al. Phonon-assisted electronic transitions in phosphorus-doped n-type chemical vapor deposition diamond films. Diam. Relat. Mater. 2001. 10, Nos 3-7. P. 439-443. https://doi.org/10.1016/S0925-9635(00)00511-2

13. Savchenko D.V., Vorlicek V., Kalabukhova E.N. et al. Infrared, Raman and magnetic resonance spectroscopic study of SiO2:C nanopowders. Nanoscale Res. Lett. 2017. 12. P. 292-1-292-12. https://doi.org/10.1186/s11671-017-2057-1

14. Savchenko D., Kalabukhova E., Sitnikov A. et al. Magnetic resonance and optical study of carbonized silica obtained by pyrolysis of surface compounds. Adv. Mat. Res. 2014. 854. P. 99-104. https://doi.org/10.4028/www.scientific.net/AMR.854.99

15. Trassl S., Motz G., Rossler E., Ziegler G. Characterization of the free-carbon phase in pre-cursor-derived Si-C-N ceramics: I, Spectroscopic methods. J. Am. Ceram. Soc. 2004. 85, No 1. P. 239-244. https://doi.org/10.1111/j.1151-2916.2002.tb00072.x

16. Prasad B.L.V., Sato H., Enoki T. et al. Heat-treatment effect on the nanosized graphite ?-electron system during diamond to graphite conversion. Phys. Rev. B. 2000. 62, No 16. P. 11209-11218. https://doi.org/10.1103/PhysRevB.62.11209

17. Erdem E., Mass V., Gembus A. et al. Defect structure in lithium-doped polymer-derived SiCN ceramics characterized by Raman and electron paramagnetic resonance spectroscopy. Phys. Chem. Chem. Phys. 2009. 11, No 27. P. 5628-5633. https://doi.org/10.1039/b822457a

18. Cantin J., Schoisswohl M., von Bardeleben H. et al. Pb1 defect study and chemical characterization of the Si(001) SiO2 interface in oxidized porous silicon. Surf. Sci. 1996. 352-354. P. 793-796. https://doi.org/10.1016/0039-6028(95)01230-3

19. Mrozowski S. Specific heat anomalies and spin-spin interactions in carbons: A review. J. Low Temp. Phys. 1979. 35, Nos 3-4. P. 231-298. 0 https://doi.org/10.1007/BF0011558

20. Izumi T., Show Y., Deguchi M. et al. Electron spin resonance study of diamond-like nuclei produced in an Si surface layer by high dose C ion doping. Thin Solid Films. 1993. 228, Nos 1-2. P. 285-288. https://doi.org/10.1016/0040-6090(93)90617-X

21. Misra S.K. Role of exchange interaction in effecting spin-lattice relaxation: Interpretations of data on Cr3+ in Cu2+xCr2xSn2-2x spinel and dangling bonds in amorphous silicon. Phys. Rev. B. 1998. 58, No 22. P. 14971-14977. https://doi.org/10.1103/PhysRevB.58.14971

22. Andronenko S.I., Stiharu I., Misra S.K. Synthesis and characterization of polyureasilazane derived SiCN ceramics. J. Appl. Phys. 2006. 99, No 11. P. 113907-1-113907-5. https://doi.org/10.1063/1.2202291

23. Savchenko D., Kulikovsky V., Vorlicek V. et al. Optical and magnetic resonance study of a-SiCxNy films obtained by magnetron sputtering. phys. status solidi (b). 2014. 251, No 6. P. 1178-1185. https://doi.org/10.1002/pssb.201451041

24. Hoch M.J.R., Reynhardt E.C. Nuclear spin-lattice relaxation of dilute spins in semiconducting diamond. Phys. Rev. B. 1998. 37, No 16. P. 9222-9226. https://doi.org/10.1103/PhysRevB.37.9222

25. Shames A.I., Panich A.M., Mogilko E. et al. Mag-netic resonance study of fullerene-like glassy carbon. Diam. Relat. Mater. 2007. 16, No 12. P. 2039-2043. https://doi.org/10.1016/j.diamond.2007.08.020

26. Vasin A.V., Rusavsky A.V., Lysenko V.S. et al. The influence of vacuum annealing temperature on the fundamental absorption edge and structural relaxation of a-SiC:H films. Semiconductors. 2005. 39, No 5. P. 572-576. https://doi.org/10.1134/1.1923567